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ABSTRACT
We analysed a high-fidelity DNS dataset of accelerating

flow through a porous medium consisting of uniform spheres
in hexagonal close-packed arrangement. The fluid was accel-
erated from rest by a constant pressure gradient until the super-
ficial volume-averaged velocity attained its steady-state ampli-
tude. Our focus is on the generation mechanism of the over-
shoot of the superficial streamwise velocity that appears just
before the steady-state amplitude is reached. The relative mag-
nitude of the velocity overshoot appears to be Reynolds num-
ber dependent, and can be larger than 5% of the steady-state
value. The current study suggests that the velocity overshoot
is a consequence of enhanced intercomponent energy transfer
carried out by pressure, which redistributes streamwise energy
into the orthogonal directions, and it mainly takes place in the
wake regions behind the sphere contact points.

BACKGROUND
Transient porous media flow establishes an important

class of flow phenomena. There are numerous technical and
environmental flow problems which fall into this class, e.g.:
flow through plant canopies in atmospheric boundary layers;
coral colonies under the influence of ocean waves (Lowe et al.,
2005, 2008); or the interaction of a turbulent boundary layer
with the flow and transport in the upper layer of the soil or a
snow layer.

In our recent contributions, we studied accelerating flow
through hexagonal sphere-pack porous media by means of
direct numerical simulations (Sakai & Manhart, 2020; Sakai
et al., 2021). Figure 1 depicts the sphere-pack geometry.
We observed that during the development, superficial (i.e.
volume-averaged including solid phase) streamwise velocity
⟨u⟩s overshoots before reaching to the steady-state value when
the Reynolds number based on the steady-state ⟨u⟩s, sphere di-
ameter d and the fluid kinematic viscosity ν —which will be
referred to as Resteady— is larger than 10 (see figure 2). The
relative intensity of the overshoot with respect to the steady-
state level depends on Resteady, and it could be larger than
5%, therefore this phenomenon is technically relevant (see fig-

Figure 1: Hexagonal close pack with a symmetry plane

ure 3). Conversely if the Reynolds number is lower, ⟨u⟩s re-
laxes to its steady-state without any overshooting (see the L6
case in figure 2). A similar observation was made by Hill &
Koch (2002) with a different sphere pack geometry, however
the underlining mechanics was remained unexplored. There-
fore, it is of our interest to study such mechanism particu-
larly because the commonly-used unsteady flow models (e.g.
unsteady Darcy, Darcy-Forshheimer equations) cannot predict
the overshoot. Moreover, it was also demonstrated that the ex-
act thin boundary layer asymptotics for the porous media flow
by Johnson et al. (1987) does not incorporate such overshoot
(Sakai et al., 2021).

In Sakai et al. (2021), it was found that the the appearance
time of the velocity overshoot asymptotically converges to a
constant multiple of the inviscid dimensionless time τinv:

τinv = ( ρd
−∂x ⟨p⟩i

)
1
2

, (1)
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Figure 2: Streamwise superficial velocity development,
normalised by the inviscid scales. Colored symbols im-
ply different simulation cases being defined in Sakai &
Manhart (2020): +, L6; +, SNL1; ●, SNL2; ◾, SNL3;▲,
SNL4; +, UNL1; ●, UNL2; +, T1; ●, T2; ◾, T3; ▲, T4.

0 100 200 300 400

0

1

2

3

4

5

6

Figure 3: Relative intensity of overshoot vs. Resteady.

which is based on the intrinsic pressure gradient (∂x ⟨p⟩i) driv-
ing the flow, the sphere diameter d and the fluid density ρ .
From the flow topological viewpoint, this inviscid time-scale
was shown to control the wake formation process inside the
accelerating porous media flow, and more specifically, the de-
velopment of the flow separations emerging behind the sphere
contact points.

In the current contribution, we investigate the generation
mechanism of the velocity overshoot in the accelerating porous
media flow by means of the volume-averaged energy equation.
The a-posteriori application of such energy equation to our
DNS dataset (Sakai & Manhart, 2020) allows us to quantify
the exchange of energy between the three spatial directions.
Finally, our special attention will be paid upon the possible
link between the velocity overshoot and the pore-scale wake
formation, which appear to be controlled by the same univer-
sal time-scale.

NUMERICAL METHODS
We employ our in-house flow solver MGLET, which is

based on a 2nd-order central finite-volume spatial discretisa-
tion, and a low-storage variant of a three-step Runge-Kutta
method (Williamson, 1980), to integrate in time the incom-

pressible Navier-Stokes equations for velocity and pressure,
viz.

∇⋅uuu = 0 , (2)
∂uuu
∂ t

+(uuu ⋅∇)uuu = − 1
ρ
∇p+ν∇2uuu , (3)

where uuu = [u,v,w] is velocity vector, p, and ρ are pressure,
fluid density respectively.

Those variables are stored in a Cartesian grid with stag-
gered arrangement. Complex geometries are represented by
a second-order mass-conserving immersed boundary method
(Peller et al., 2006; Peller, 2010; Sakai & Manhart, 2020). The
pressure computation is decoupled from the velocity computa-
tion by Chorin’s projection method (Chorin, 1968). Conse-
quently, a Poisson equation needs to be solved for the pressure
for each Runge-Kutta sub-step by means of Strongly Implicit
Procedure (SIP) (Stone, 1968).

The code is MPI-parallel based on a conventional domain
decomposition approach, and capable of a satisfactory scaling
up toO(105) parallel processes, thanks to the continuous per-
formance optimisation being applied to the code (Sakai et al.,
2019; Sakai & Manhart, 2021).

DNS DATASET
In this contribution, we analyse a high-fidelity dataset

consisting of 16 DNS cases, which was first published in Sakai
& Manhart (2020). We consider porous media flow that is rep-
resented by a triply-periodic numerical box of [Lx,Ly,Lz]/d =
[2,

√
3, 2
√

6
3 ], which is filled by uniform spheres being packed

in a hexagonal arrangement (cf. figure 1). The porosity of
the sphere-pack is at the close-pack limit of ε ≈ 0.26. A rest-
ing fluid was accelerated at a constant streamwise pressure
gradient in x-direction (∂x ⟨p⟩i) until steady-state being es-
tablished. The applied pressure gradient, dynamic viscosity
(µ = ρν), and the sphere diameter (d) are fixed, whereas ρ is
adjusted to achieve desired Reynolds numbers. We employed
equidistant grid points distribution in x, y, z-directions, with
162 finite-volume cells per diameter up to Resteady = 48, and
324 points per diameter between 59 ≤ Resteady ≤ 347. This
highly adequate grid resolution was adopted to resolve the
very thin potential-flow type boundary layers forming on the
sphere surface when the flow is suddenly accelerated from the
rest. The range of Resteady covered by the current dataset is
5.62×10−7 ≤ Resteady ≤ 347, spanning over linear, steady non-
linear, unsteady nonlinear and turbulent flow regimes.

In this proceeding, we study closely the UNL2 (Unsteady
Non-Linear) and the T4 (Turbulent) cases from the dataset,
which correspond to Resteady = 138 and 347 respectively.
Those cases are well above the critical point where the velocity
overshoot appears (see figure 3), yet their Reynolds numbers
being sufficiently separated so that the generality of our find-
ings could be tested to the limit of the database.

SUPERFICIAL VELOCITY EVOLUTION
Figure 4 shows the temporal evolution of superficial ve-

locity components (solid lines), as well as the square-root of
the energy components (dashed lines). Both in the case UNL2
and T4, ⟨v⟩s and ⟨w⟩s are few order of magnitude smaller than
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(a) UNL2

(b) T4

Figure 4: Temporal evolution of superficial velocity
scales

the predominant component, ⟨u⟩s. This is due to the reflec-
tional and the rotational symmetries of the pore geometry be-
ing imprinted to the v and w fields which cancel the most of
their contributions under the volume-averaging operation, al-
though those symmetries are weakly broken already at those
Reynolds numbers (Sakai & Manhart, 2020). Note when the
flow Reynolds number is smaller than unity (i.e. linear flow
regime), the above symmetries are fully preserved so that ⟨v⟩s
and ⟨w⟩s are zero to the limit of the numerical accuracy. Con-
versely, ⟨u⟩s is finite for all Resteady although there also ex-
ists a d-periodic translational symmetry in x-direction. This is
the consequence of the pressure gradient being applied in the
streamwise direction destroying this symmetry.

In Sakai & Manhart (2020) it was shown that reverse flow
emerges for Resteady > 10. Consequently, the flow recircula-
tion regions contribute negatively to ⟨u⟩s, whilst it does not for
the corresponding root-mean-square value

√
⟨uu⟩s. This dif-

ference is the reason why the level of
√

⟨uu⟩s is considerably
higher than ⟨u⟩s (see figure 4). For a similar reason,

√
⟨vv⟩s

and
√

⟨ww⟩s are also significantly larger than ⟨v⟩s and ⟨w⟩s.
Through the application of the intrinsic pressure gradi-

ent in x-direction the streamwise kinetic energy grows rapidly
and peaks out at around t/τinv = 1.5 in both cases. Subse-
quently, the energy components in the perpendicular directions
(i.e. ⟨vv⟩s and ⟨ww⟩s) peak out around t/τinv = 1.7, with rela-
tively steep gains between 1.0 < t/τinv < 1.7. Whilst the ⟨vv⟩s
and ⟨ww⟩s are climbing up to their peaks, ⟨uu⟩s drops its level
noticeably.

Based on the above observation, we hypothesise that an

intercomponent energy transfer from the primary flow direc-
tion to the directions perpendicular to the flow is responsible
for the appearance of the superficial velocity overshoot. In the
following section, the above hypothesis is evaluated by means
of the superficial energy budget equations.

SUPERFICIAL ENERGY BUDGET
Let us suppose the streamwise superficial velocity over-

shoot as a consequence of the energy transfer to other spatial
directions, or dissipation, or in combination. Consequently, we
consider the following component-wise superficially-averaged
energy transport equations:

1
2

∂ ⟨u
(i)u(i)⟩s
∂ t

+⟨u
(i)u j

∂u
(i)

∂x j
⟩

s
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

advective

=

− 1
ρ

⎛
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⎝

⟨u
(i)

∂ p′

∂x
(i)

⟩
s
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pressure

+⟨u⟩s ∂x ⟨p⟩i êx
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⎠

+ν ⟨u
(i)

∂
2u
(i)

∂x2
j

⟩
s

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
viscous

(4)

where p′ is the fluctuations around ⟨p⟩i, i.e. p = ⟨p⟩i + p′,
whereas the subscript (i) implies i being a free index, i.e. no
summation over the index. Note that the above transport equa-
tions are the component-wise variant of the one discussed in
Zhu et al. (2014), which consists of advective, pressure, energy
input and viscous transport terms (see annotations in equation
4). Note that the viscous term consists of energy diffusion
and dissipation, whereas the energy input term is only active
in x-direction in the current configuration. As in Zhu et al.
(2014), we expect the following by definition: the advective
terms should vanish under periodic boundary and divergence-
free conditions; similarly the viscous diffusion vanishes due to
the periodicity, whereas viscous dissipation is active as a sink
term.

Finally the pressure term can be further decomposed into
pressure diffusion and inter-component transfer terms, as:

⟨u
(i)

∂ p′

∂x
(i)

⟩
s

=
∂ ⟨u

(i)p′⟩
s

∂x
(i)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p. diffusion

−⟨p′⟩s

∂ ⟨u
(i)⟩s

∂x
(i)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
inter−comp.

. (5)

Note that the pressure diffusion term vanishes also due to
the periodic boundary condition, whereas the inter-component
term acts as both source and sink terms that allow energy in
different spatial directions to be exchanged and re-distributed.

Those superficial energy transport terms were evaluated
a-posteriori based on a series of flow snapshots: for the UNL2
case, a series of 61 snapshots were saved which were sepa-
rated by ∆t

τinv
≈ 0.04; whereas for the T4 case we collected 181

snapshots with ∆t
τinv

≈ 0.02 separation.
Figure 5 depicts the temporal evolution of the superficial

energy transport terms. The kinetic energy is injected through
the pressure input term (the dotted line). The advective terms
(the solid lines) are virtually zero due to the periodicity, which
is in accordance with our expectation. Conversely, finite lev-
els of the viscous terms (the solid-dashed lines) can be ob-
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(a) UNL2

(b) T4

Figure 5: Temporal evolution of superficial energy trans-
port terms

served, which should be exclusively from the energy dissipa-
tion process in the respective components. Similarly, the pres-
sure terms (the dashed lines) consist exclusively of the inter-
component energy terms, transferring energy from the primary
direction x to the orthogonal directions in y and z, according to
their respective signs.

Since any disturbance in the pressure field propagates at
the infinite speed in incompressible flow, the pressure trans-
port terms in the respective directions peak out simultane-
ously, which is slightly later than t/τinv = 1.5 for both cases.
The magnitude of the pressure terms increases rapidly between
t/τinv = 1.2 and 1.6, and this time range coincides with when
the pore-scale vortical structures break down (see Fig. 9 and 12
in Sakai & Manhart (2020)), directly after the Re-independent
consistent pore-scale flow structure evolution emerges. More-
over, it coincides with the aforementioned time range when we
observed rapid increases in ⟨vv⟩s and ⟨ww⟩s (cf. figure 4).

Finally, notice a delay between the growth of the pressure
re-distribution and the viscous dissipation terms. This could
be attributed to the time required for the aforementioned fine-
scale structures in the bulk flow region to build up, which con-
tribute to the enhanced energy dissipation.

In the subsequent section, we further investigate the
mechanism of the pressure inter-component energy transfer
by evaluating the spatial distributions of the terms inside the
pores.

RELEVANT PORE-SCALE FLOW
To examine the mechanism of the rapid growth of the

pressure transport terms, their pore-scale spatial distributions
in the UNL2 case are depicted at two instances: t/τinv = 0.6
in figure 6, and t/τinv = 1.5 in figure 7. Note that the earlier
instance (t/τinv = 0.6) is in the middle of the ⟨u⟩s accelera-
tion, whereas the later instance (t/τinv = 1.5) is approximately
at tpeak.

A local symmetry plane defined by
√

3
3 y−

√

6
3 z= 0 was se-

lected for this visual study. The outline of the pore geometry is
defined by four spheres at the corners, in addition to a contact
point of a pair of spheres being aligned in the direction perpen-
dicular to the depicted plane. In figure 6 and figure 7, such con-
tact point is visible at the centre of the plane. The primary flow
direction is from left to right. Consequently, the flow first en-
ters the larger pore, before it is split into two high-momentum
jets by the contact point. Those split jets flow through very
narrow gaps besides the contact point, then are merged inside
the larger pore space behind the contact point. Note that this
split-merge sequence repeats itself due to the periodic bound-
ary condition. Finally, only one half of the simulation domain
in x-direction is shown in those figures to improve the visibil-
ity.

At t/τinv = 0.6 (cf. figure 6), the flow is entirely attached
to the sphere surfaces (not shown here) and only minor en-
ergy transfer exists, which is necessary to guide the attached
flow through the pore geometry. It is evident that the energy
is drawn from the streamwise to the perpendicular directions
directly in front of, as well as behind, the sphere contact point.
Conversely, the energy is fed back to x-direction on either side
of the contact point where a pair of very narrow pores is lo-
cated.

Under this condition, the spatial distribution of the pres-
sure transport terms appear to be quite antisymmetric in x-
direction (i.e. left-right), in addition to the reflectional sym-
metry around the horizontal line through the touching point
(top-bottom). This apparent antisymmetry is only slightly bro-
ken in a way that: there exists a stagnation point only in front
of the contact point; the local extrema are moderately shifted
downstream; and the amplitude of the peaks are slightly larger
in the upstream of the contact point than the downstream in
all spatial components. This quasi-antisymmetric distribution
of the energy transfer terms means that a large portion of the
contribution is cancelled out under the volume-averaging op-
eration.

Figure 7 shows the corresponding fields from t/τinv = 1.5.
At this instance, a massive flow separation and recirculation
have emerged in the downstream of the contact point (again
not shown here). Since the inertial influence is so high that the
high-momentum jets coming out of the narrow gaps besides
the contact point can no longer trace the pore geometry and
be merged in the downstream. Instead, the jets remain being
separated and impinge on to the sphere surfaces on the side,
where the strongest level of negative energy transfer can be
observed in the x-component (cf. figure 7a).

As the consequence of this flow regime change, the afore-
mentioned antisymmetry in the spatial distribution of the pres-
sure transport terms has been destroyed entirely. This com-
plete disappearance of the antisymmetry results a rapid in-
crease in the net energy transfer rate from the streamwise to
the perpendicular directions. Evidently, the energy level in the
streamwise direction drops due to the enhanced re-distribution,
and the difference between the peak to the subsequent equilib-
rium levels forms the aforementioned velocity overshoot.
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Figure 6: Instantaneous inter-component energy transfer
terms at t/τinv = 0.6. UNL2.
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Figure 7: Instantaneous inter-component energy trans-
port terms at t/τinv = 1.5. UNL2.
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SUMMARY
In this contribution, we consider accelerating porous me-

dia flow by means of fully-resolved DNS simulations, and we
investigate the mechanism of the velocity overshoot observed
in the superficial velocity development for sufficiently high
Reynolds number. For all Re, the intrinsic pressure gradient
feeds energy into the streamwise component, whereas only un-
der a strong influence of inertia —i.e. high enough Re when
the velocity overshoot emerges— the net inter-component en-
ergy transfer from the streamwise into the perpendicular com-
ponents becomes significant. Through the detailed exam-
ination inside the pores, it was demonstrated that the en-
hanced inter-component energy transfer is the consequence
of flow separation behind the contact points. Finally, this
rapid pressure-induced energy transfer takes place between
t/τinv = 1.0 and 1.7, where τinv is inviscid time-scale.
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