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Instituto Superior Técnico, Universidade de Lisboa

Av. Rovisco Pais, 1, Lisboa 1049-001, Portugal
marco.zecchetto@tecnico.ulisboa.pt

Tomoaki Watanabe
Department of Aerospace Engineering

Nagoya University,
464-8603 Nagoya, Japan

watanabe.tomoaki@c.nagoya-u.jp

Kouji Nagata
Department of Aerospace Engineering

Nagoya University,
464-8603 Nagoya, Japan
nagata@c.nagoya-u.jp

Carlos B. da Silva
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ABSTRACT
Direct numerical simulations (DNS) of turbulent fronts

created by non-equilibrium (unbalanced) turbulence are used
to assess the characteristics of the turbulent/non-turbulent in-
terface (TNTI) that separates regions of turbulent from non-
turbulent (or irrotational) flow. The effects of the unbalance
can be observed in the detailed shape of the conditional ensto-
phy magnitude, and in the magnitude of the maximum enstro-
phy but do not affect its main features. In particular the mean
thickness of the TNTI is equal in classical or non-equilibrium
turbulence i.e. it scales with the Kolmogorov micro-scale as
previously observed at high Reynolds numbers.

INTRODUCTION
According to the classical Richardson-Kolmogorov en-

ergy cascade picture the rate of viscous dissipation of kinetic
energy at high Reynolds numbers is imposed by the inviscid
dynamics of the large scale, energy carrying eddy motions
(Richardson, 1922; Kolmogorov, 1941a,b). This concept how-
ever, relies on the assumption that the rate of energy transfer
from the large-scales is balanced by the rate of viscous dis-
sipation caused by the smallest scale eddies. In this case the
non-dimensional dissipation rate Cε , defined by

Cε = ⟨ε⟩L /U 3, (1)

is constant (Davidson, 2004), where ⟨ε⟩ is the mean dissipa-
tion rate. However, several experimental and numerical works
(Valente et al., 2014; Watanabe et al., 2019; Takamure et al.,
2019) have shown that there are important flow cases/flow re-
gions where Cε is not constant even if the flow is at very
high Reynolds number and displaying the classic −5/3 energy
spectrum over a wide wave-number range region. Indeed a
power law of Cε ∼ Ren

l , with n ≈−1 and Rel a local Reynolds
number, is often observed (Vassilicos, 2015; Goto & Vassili-
cos, 2016) attesting a lack of equilibrium between the large and
small scales of motion e.g. Valente & Vassilicos (2012); Isaza
et al. (2014) reported a sudden transition from Cε ∼ Re−1

l to

Cε = const in the near and far field regions of grid-generated
turbulence.

The goal of the present work is to assess the effects of
non-equilibrium turbulence in the characteristics of the so-
called turbulent/non-turbulence interface layer that separates
many flow fields e.g. jets, into an irrotational (or non tur-
bulent) an a turbulent region. For this purpose several direct
numerical simulations (DNS) of turbulent fronts are carried
out, where the turbulent core region is in an unbalanced (non-
equilibrium) state.

NUMERICAL METHOD
Direct numerical simulations (DNS) of forced homoge-

neous isotropic turbulence (HIT), decaying isotropic turbu-
lence (DEC), and shear free turbulence (SFT) are carried
out employing classical pseudo-spectral methods (collocation
method) for spatial discretization, and a three-step third or-
der explicit Runge-Kutta scheme for temporal advancement;
the 2/3 rule is used for full de-aliasing. Periodic boundary
conditions are imposed in the x, y, and z directions. A uni-
form (∆x = ∆y = ∆z) grid of 10243 collocation points is cre-
ated for all the cases in a cubic box of 2π sides. A DNS of
forced homogeneous isotropic turbulence, was carried out us-
ing the forcing scheme by Alvelius (1999) with a peak forc-
ing concentrated in the three wavenumbers centred at kp = 5,
and the flow has a Reynolds number of Reλ = 230 and res-
olution of kmaxη = 1.5 once the statistically stationary is at-
tained. From this point onward the forcing scheme is turned
off creating an unbalance in turbulence dynamics. Two dif-
ferent condition are simulated: in one case turbulence is let to
evolve freely (decaying turbulence); in the other simulation the
velocity fields are convoluted by an hyperbolic tangent profile
that essentially conserves the velocity of the HIT simulation,
and thus its vorticity, only in a central zone of π/3 width, sup-
pressing it in the rest of the domain (shear free turbulence). In
shear free turbulence (figure 1) two sharp and highly convo-
luted turbulent/non-turbulent interfaces (TNTI) are generated
by the remaining core turbulence. As time progresses, the ini-
tial isotropic turbulence region (where |ω| ̸= 0) spreads into
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the irrotational region (where |ω| = 0) without mean shear.
For comparison, another shear free turbulent simulation is per-
formed employing the same procedure but starting from (clas-
sical) forced homogeneous isotropic turbulence in equilibrium.
In order to isolate data collected at particular locations within
the TNTI layer, conditional statistics in relation to the dis-
tance from a specific position within the TNTI layer are used.
Due to the highly convoluted shape of the TNTI and its inter-
mittent position, plane-by-plane statistics will invariably con-
tain samples corresponding both to irrotational and to turbu-
lent flow events masking the detailed local dynamics of turbu-
lence. Conditional statistical data is obtained with a 3 steps
procedure: i) the outer surface of the TNTI layer - the irro-
tational boundary (IB) - which consists in an iso-surface of
vorticity magnitude |ω|=√

ωiωi is detected by analysing the
histogram of the turbulent flow fraction of the flow; ii) a lo-
cal 3D normal to the IB is defined at each one of the Nx ×Nz
points in the upper and lower shear layers that delimit a in-
terface envelope;iii) any flow quantity of interest is collected
at fixed distances yI , by trilinear interpolation, into a grid de-
fined on this local 3D normal, that points into the interior of
the turbulent core region, so that yI < 0 and yI > 0 correspond
to the irrotational and turbulent regions, respectively (the IB is
located at yI = 0). Once the procedure is completed statistical
analysis is performed on the collected data set. Furthermore,
the temporal evolution of Cε is calculated in a stack of planes
on the turbulent core around the central plane using equation
1. Due to the flow geometry, instead of the integral scale one
uses the longitudinal integral length scale L11 computed from
the one dimensional energy spectrum E11(κ1) and the mean
streamwise fluctuating velocity u′1 norm is replaced by U . The
mean dissipation is computed inside the turbulent core region
using a stack of 2d planes.

RESULTS
Figure 1 shows contours of vorticity magnitude near the

turbulent/non-turbulent interface layer at the start of the sim-
ulation, when the turbulent core region has characteristics of
non-equilibrium turbulence (Fig. 1 a), and later during the
simulation, when the flow recovers classical turbulent statistics
(Fig. 1 b). As can be seen, a larger number of convolutions is
imprinted in the TNTI layer at a later stage, as expected, be-
cause the integral scale of the flow typically increases with
time, typical of classical turbulence. Moreover, the shape of
the TNTI seems to be sharper, even if regions of more intense
vorticity seem to be placed further away from the TNTI in the
unbalanced (non-classical) interface layer.

The non-dimensional dissipation Cε evolves with the
time, from the typical value of Cε ≈ 0.5 from forced isotropic
turbulence until Cε ≈ 1.0, typical of free decaying turbulence
(Fig. 2 a). During this time the non-dimensional dissipation
exhibits the power law Cε ∼ Re−1.2

λ
typical of non-equilibrium

turbulence. Figure 2 b) shows the temporal evolution of the
turbulent kinetic energy and viscous dissipation in a simula-
tion of isotropic turbulence right after the power input is turned
off. The time lag observed initially in the evolution of the two
quantities is typically observed in non-equilibrium turbulence
as described in Valente et al. (2014).

Figures 3 show conditional mean profiles of enstrophy
ωiωi, in relation to the distance from the TNTI, at different
instants. In figures 3 (a,b) the first instants the flow field in
the turbulent core region is characteristic of equilibrium tur-
bulence, whereas in figures 3 (c,d) the evolution starts from
non-equilibrium turbulence. The conditional mean profiles of

enstrophy with no normalisation (figure 3 a,c) show the typi-
cal sharp rise bridging the regions of irrotational (yI < 0) and
turbulent (yI > 0) flow, respectively, and the expected decay of
enstrophy in the turbulent core region as the flow evolves with
time.

The normalisation of the conditional enstrophy profiles
using the procedure outlined in Zecchetto & da Silva (2021) is
shown in figure 3 (b,d). Recall that in that paper it has been
shown that the shape of the conditional enstrophy, when nor-
malised with the local Kolmogorov velocity and time scales, is
universal i.e. equal in all flows, provided the Reynolds num-
ber is sufficiently high. The evolution of the profiles with time
is similar whether the starting instant is in equilibrium or not.
In the first 3-4 instants the flow is still evolving from the SFT
initial state. For the later times the profiles begin to collapse
and the shape recovered in the 2 cases is essentially the same
obtained in Zecchetto & da Silva (2021). Indeed, a sharp peak
of 1.5 is attained at a distance of about 10η from the turbulent
non-turbulent interface and the theoretical value of 1 is attained
after approximately 40η . This ‘self-similar’ state is reached
faster in equilibrium turbulence, which can be ascribed to dif-
ferent small scales dynamics. However, the mean thickness of
the TNTI is equal in classical or non-equilibrium turbulence
i.e. it scales with the Kolmogorov micro-scale as previously
observed at high Reynolds numbers.

More details will be provided during the presentation.
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(a) (b)

Figure 1. Contours of vorticity magnitude for the shear free turbulence simulations for two instants corresponding to non-equilibrium
turbulence (a) t = 3.08 and equilibrium turbulence (b) t = 3.80.
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Figure 2. (a) Evolution of the non-dimensional dissipation rate Cε with time in decaying isotropic turbulence and in shear free
turbulence (computed near the centerline of the flow region); (b) Time evolution of turbulent kinetic energy and dissipation in decaying
isotropic turbulence, once the forcing is turned off. The time lag observed initially in the evolution of the two quantities is typically
observed in non-equilibrium turbulence.
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(a) (b)

(c) (d)

Figure 3. Conditional mean profiles of enstrophy ωiωi, in relation to the distance from the TNTI, at different instants (a,c) without
normalization and (b,d) normalised by the local Kolmogorov scale. The irrotational boundary is placed at yI = 0 while the non-turbulent
(irrotational) and turbulent flow regions are at yI < 0 and yI > 0, respectively. The top figures refer to SFT starting from turbulence in
equilibrium state whereas the bottom to SFT starting from non-equilibrium turbulence.
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