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ABSTRACT
The K41 framework remains central to the understand-

ing of turbulent flows. However, in unsteady turbulence,
K41’s critical equilibrium assumption is expected to hold in
an asymptotic manner, as the Reynolds number and wavenum-
bers tend to infinity, rendering K41 not strictly valid at finite
wavenumbers. This work proposes a generalization of K41
for non-equilibrium effects, in decaying turbulence cascades
far from initial conditions. The main result is a correction to
the -5/3 law for out-of-equilibrium eddies, unrelated to inter-
mittency effects. Experimental and numerical evidence is pro-
vided in support of the theoretical results.

Introduction
A landmark of out-of-equilibrium physics remains Kol-

mogorov’s 1941 (K41) theory of turbulence (Kolmogorov,
1941a,c,b), regulating many quantities of engineering interest.
A cornerstone assumption of K41 is that of cascade equilib-
rium (Pope, 2001). Note that the latter is used here in the con-
text of stationarity and is not related to the concept of detailed
balance encountered in statistical physics. While cascade equi-
librium is exactly fulfilled in statistically static cascades, it
is generally expected to be valid only asymptotically in un-
steady ones, as turbulent eddies become vanishingly small,
and Reynolds number infinite (Pope, 2001; Vassilicos, 2015).
Therefore, for such unsteady cascades K41 cannot exactly de-
scribe finite, out-of-equilibrium wavenumbers, the physics of
which remain obscure.

The recent investigation of Goto & Vassilicos (2016) has
indicated that out-of-equilibrium eddies exhibit collective dy-
namics, at least in the case of freely decaying homogeneous
turbulence. In particular, the turbulence cascade was shown
to reach a “balanced” non-equilibrium state far from initial
conditions, in the sense that the terms of the energy budget
equation, expressed in spectral space, scale with each other at
non-equilibrium wavenumbers. It is noted that the possibility
of an asymptotic approach to a balanced state, far from initial
conditions, was initially postulated by George (1989, 1992) for
the whole spectral range, while Goto & Vassilicos (2016) ob-
served it, in their direct numerical simulations (DNS), only for
eddies comparable to the integral length scale of the cascade.

The above observation of balance thus allows the mod-
elling of the behaviour of the large, out-of-equilibrium scales
of the turbulence cascade, at least in the special case of decay-
ing turbulence far from initial and boundary conditions. Using
that information, this work proposes an extension of the K41
theory, for out-of-equilibrium effects. The main results are
a correction to the -5/3 law and the formulation of an equa-

tion which greatly resembles the dissipation equation of the
k-epsilon model for decaying homogenous turbulence. The
assumptions and conclusions of this work are validated using
data from laboratory and numerical experiments. A more thor-
ough presentation of this work can be found in Steiros (2022).

Balanced cascade
A starting point for studies on homogenous decaying tur-

bulence is often the scale-by-scale energy budget

∂K>(k, t)
∂ t

= Π(k, t)− ε
>(k, t) , (1)

where K>(k, t) =
∫

∞

k E(k, t)dk and ε>(k, t) =
∫

∞

k k2E(k, t)dk
are the high pass filtered turbulence kinetic energy and dissi-
pation rate, respectively, with E(k, t) being the energy spec-
trum. Π(k, t) is the interscale flux from wavenumbers smaller,
to wavenumbers larger than k. In the following, when the su-
perscript > is dropped, the integration occurs from 0 to infin-
ity.

Kolmogorov’s equilibrium assumption states that for suf-
ficiently large Reynolds numbers and for eddies which are of
negligible size compared to the integral length scale L(t) =
3π

4
∫

∞

0 k−1E(k, t)dk/K(t), the cascade is approximately sta-
tionary, i.e. ∂K>

∂ t ≈ 0. If in addition to the above assumption
one considers wavenumbers k which are not too large and so
that the local dissipation is negligible, then ε>(k, t) ≈ ε(t).
Combining the above two arguments one then obtains

Π(k, t)≈ ε(t) , (2)

which is the well-known repercussion of the equilibrium as-
sumption. This result is foundational, as it directly leads to the
-5/3 law for the energy spectrum. Indeed, dimensional analysis
arguments lead to E(k, t) ∝ Π2/3k−5/3. Utilization of expres-
sion 2 then readily leads to E(k, t) ∝ ε2/3k−5/3, i.e. the -5/3
law (Pope, 2001). As the equilibrium assumption (i.e. expres-
sion 2) was used in its derivation, we might expect that there
will be deviations from the -5/3 law in cases of non-stationarity
in the cascade.

To account for out-of-equilibrium phenomena one has to
find an alternative expression for the energy flux Π, without
having to discard the time-dependent term ∂K>

∂ t . To do that, we
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Figure 1. g ≡ Π/ε (solid lines) and Cε (dashed line) as a
function of time, in decaying periodic box turbulence. t = 0
marks the onset of decay. Note that κ = kL.

may use the original idea of George (1989, 1992), who postu-
lated that, far from initial conditions, transient turbulent sys-
tems (including the turbulence cascade) will approach a state
of “balance” where the dynamic terms of their characteristic
budget differential equation should scale with each other.

Under the assumption of balance, the budget equation 1
then leads to ∂K>(kL,t)

∂ t ∝ Π(kL, t) ∝ ε>(kL, t). For wavenum-
bers which are not too small, one has ε>(k, t)≈ ε(t), and thus
balance implies

Π(k, t) = g(kL)ε(t) . (3)

Figure 1 validates equation 3 using decaying periodic box tur-
bulence DNS (see section “Methodology” for details on the
dataset). At time t = 0 turbulence is left to decay, and after a
sufficient time has passed (i.e. so that turbulence is far from
its initial conditions) g ≡ Π/ε becomes independent of time
for a variety of κ = kL > 1. Figure 1 also shows that spec-
tral balance coincides with the establishment of Kolmogorov’s
dissipation scaling ε =Cε (

2
3 K)3/2/L, with Cε a constant. That

is, because combination of equation 3 with the well-known ex-
pression for the large scale energy flux Π ∝ ( 2

3 K)3/2/L directly
yields the dissipation scaling.

It can be readily seen that the above self-preserving ex-
pression for Π is an (out-of-equilibrium) generalization of Kol-
mogorov’s equilibrium assumption, i.e. equation 2. The ar-
bitrary function g(kL) will be smaller than unity for decaying
turbulence, and is expected to approach unity (i.e. equilibrium)
as kL → ∞ and Re → ∞, in agreement with Kolmogorov’s
ideas (Pope, 2001). The main objective of this article is to de-
termine g(kL) for sufficiently large, but smaller-than-infinite
wavenumbers, i.e. as equilibrium is being approached but has
not yet been reached. Combination of that with the dimen-
sional analysis expression E(k, t) ∝ Π2/3k−5/3 will then yield
the out-of-equilibrium correction to the -5/3 law.

Simple transportation of energy
To calculate g(kL) we follow the original idea of Lum-

ley (1992) who postulated that, at sufficiently high Reynolds
numbers, a range of scales will form in the cascade, where ef-
fects linked to production or dissipation of turbulence kinetic
energy will be negligible. Consequently, the energy there is
conserved, simply transported downwards in the cascade. We
interpret the above statement as the substantial derivative of
the energy flux being zero in the self-preserving coordinate
system (κ, t), i.e.

DΠ/Dt = ∂Π/∂ t +V ∂Π/∂κ = 0 . (4)

Equation 4 poses a constraint which can be used to calcu-
late the function g but to do that, we first need an expres-
sion for the interscale energy speed V = dκ/dt. Follow-
ing the dimensional arguments of Pao (1965), we expect that
dk/dt =CvΠ1/3k5/3, where Cv is a coefficient of proportional-
ity. Using equation 3 and the Kolmogorov dissipation scaling
ε =Cε (

2
3 K)3/2/L we end up with

dk/dt =
3
2

Cv

C2/3
ε

ε(t)
L(t)K(t)

g(κ)1/3
κ

5/3 .

The speed of the energy flux across normalized wavenumbers
is dκ

dt = L dk
dt + k dL

dt . It is expected that the second term on the
right hand will be negligible compared to the first, i.e. dκ

dt ≈
L dk

dt , as the time scale of the nonlinear energy transport of an
individual eddy must be much smaller than that of the dilation
of the entire cascade. This postulation was verified using the
DNS data, and the term k dL

dt was found to be at least an order
of magnitude smaller than L dk

dt , after κ = 2.
Under the above assumption, the spectral velocity be-

comes

V ≈ 3
2

Cv

C2/3
ε

ε(t)
K(t)

g(κ)1/3
κ

5/3 .

Injecting the above result to equation 4 and using equation 3
one obtains

K
ε2

dε

dt
=−3

2
Cv

C2/3
ε

g′

g2/3
κ

5/3 =−C0 , (5)

with g′ = dg/dκ . The left hand side of the above equation is
a function of time only, while the right hand side a function
of the normalized wavenumber κ only. Thus, both sides must
equal a constant which is dependent only on initial conditions.
In figure 2 we validate the above result with the DNS data.
Approximately 3.5 time units after the onset of decay (t = 0),
both sides of the equation indeed become relatively constant,
independent of time or wavenumber.

Dissipation equation of the k− ε model
The left hand side of equation 5 is

dε

dt
=−C0

ε2

K
, (6)

which is the dissipation equation of the (otherwise empirically
derived) k− ε turbulence model, for homogenous decaying
turbulence (Pope, 2001). It is noteworthy to mention that in-
tegration of the above equation yields a power law decay for
the kinetic energy without the need of assuming turbulence in-
variants (Pope, 2001). If an invariant were to be assumed, it
would yield a value for C0. The DNS dataset indicates a value
of C0 ≈ 1.7 which is the value obtained from Loitsyanskii’s
invariant.
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Figure 2. Evolution of the two sides of equation 5 over time,
using the DNS dataset (forcing stops at t = 0). g2/3κ−5/3/g′

(solid lines) is plotted for κ = 3,4,5,6,7,8,10.

-5/3 law correction
Integration of the right hand side of equation 5 yields

g =

[
1− C0C2/3

ε

3Cv
κ−2/3

]3
where the constant of integration was

calculated using the fact that we expect equilibrium, i.e. g→ 1,
as κ → ∞ and Re→ ∞. Using the self preserving expression 3
along with the dimensional analysis result E(k, t)∝ Π2/3k−5/3

one obtains

E(κ, t)
ε(t)2/3L(t)5/3

≈Ck

[
1− cκ

−2/3
]2

κ
−5/3 , (7)

with c = C0C2/3
ε

3Cv
. Determination of the constant c requires

knowledge of Cε , Cv and C0. However, only the latter can
be calculated analytically, by assuming a turbulence invari-
ant. Thus, Cv and Cε need to be determined from observa-
tions. Our DNS results (i.e. figures 1 and 2) suggest Cε ≈ 0.9,
Cv ≈ 1 and C0 ≈ 1.7 for the DNS, which lead to c = 0.53.
To calculate the out-of-equilibrium correction of the -5/3 law
for the one-dimensional spectrum E11 (useful for experimental
hot-wire measurements), we may utilize the following expres-
sion which links the two types of spectra (see Comte-Bellot &
Corrsin (1971))

E(κ, t) =
1
2

κ
3 ∂

∂κ

[
1
κ

∂

∂κ
E11(κ, t)

]
.

A double integration then yields

E11

ε2/3L5/3
=

18
55

Ckκ
−5/3

[
1−1.209cκ

−2/3 +0.407c2
κ
−4/3

]
.

(8)
In both equations 7 and 8 a power-law out-of-equilibrium

correction (brackets) has been superimposed on the usual -5/3
law.

Figure 3 validates the above conclusions using appropri-
ately compensated spectra obtained from decaying turbulence
DNS. Since turbulence is decaying, its large scales will be
out-of-equilibrium, and the -5/3 will not be exact. Indeed,
figure 3 shows that the compensated spectrum becomes flat
only when utilizing the out-of-equilibrium expression 7. At
very high normalized wavenumbers, close to 50, there is a ten-
dency for the spectrum to approach the -5/3 law. This is the

Figure 3. Validation of expression 7 using DNS. The com-
pensated spectra become flat using the out-of-equilibrium cor-
rection, and not the classical K41 formulation.

Figure 4. Validation of expression 8 using hot wire anemom-
etry. The compensated spectra become flat using the out-of-
equilibrium correction, and not the classical K41 formulation.

point where Kolmogorov’s equilibrium can be thought approx-
imately valid. Indeed, at this normalized wavenumber expres-
sion 7 produces almost identical results to the -5/3 slope, in-
dicating that out-of-equilibrium effects have started to become
negligible.

Figure 4 validates expression 8 using hot wire measure-
ments of grid turbulence at various stages downstream of the
grid (see section “Methodology” for details). Much similar
to the three-dimensional spectra of the DNS, the experimental
one-dimensional spectra require the novel out-of-equilibrium
correction to the -5/3 law to flatten. As wavenumbers grow,
the new correction tends to become indistinguishable to the
-5/3 law, a sign that out-of-equilibrium effects have become
negligible.

Methodology
For validation purposes, a data-set of periodic-box de-

caying turbulence is used, the details of which are pre-
sented in Goto & Vassilicos (2016). A forcing f =
(−sin(k f x)cos(k f y),cos(k f x)sin(k f y),0) with k f = 4 is im-
posed on the Navier-Stokes equations, and is turned off at t = 0
when dissipation is maximum, allowing the turbulence to de-
cay. The simulation size was N3 = 20483. The spatial reso-
lution kmaxη was slightly larger than one at t0, while kmaxη

increased during decay. The Taylor scale Reynolds number
was naturally decaying, but was roughly equal to 120.

The experiments were conducted in the wind tunnel of
the Lille Fluid Mechanics Laboratory (LMFL) which has a
test section of 1× 2 m2 and a length of 21 m. Hot wire mea-
surements were conducted using a single Pt-W 5 micron wire,
3 mm long, with a 1 mm sensing element, driven by a TSI
IFA300 anemometer at 50 kHz acquisition frequency with a
low-pass filter at 20 kHz. Two planar grids were tested with
different bar thicknesses, but identical blockage (30 %). Three
inlet velocities were tested 4, 5 and 7 ms−1, and all mea-
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Figure 5. Measured dissipation coefficient for the two grids
tested (circles and squares) for inlet velocities of 7, 5 and 4
ms−1 (blue, red and black colours).

Figure 6. Measured turbulence intensities for the two grids
tested (circles and squares) for inlet velocities of 7, 5 and 4
ms−1 (blue, red and black colours).

surements were conducted at the region of the flow where
Cε = const, i.e. sufficiently far from the grid (in our case
this occurred approximately ten mesh-sizes downstream of the
grid). The Taylor scale Reynolds number ranged from 75 to
150, depending on the case. All tested cases demonstrated a
qualitatively similar behaviour to the one shown in figure 4.
Figures 5 and 6 show the measured dissipation coefficient and
turbulence intensities for the various cases tested. It is noted
that for the calculation of c in expression 8 the current value of
Cε ≈ 1 was used, while Cv was assumed unity, as in the DNS.
C0 was taken to be 1.83, which corresponds to Saffman’s in-
variant, using the fact that this invariant has been often linked
to grid turbulence (Sinhuber et al., 2015).

Concluding discussion
This work generalizes the K41 framework for unsteady

cascades far from initial conditions, on the basis of two as-
sumptions. First, that far from initial conditions the cascade
exhibits a self-preserving approach to equilibrium, and second

that quasi-isotropic wavenumbers are characterized by a sim-
ple transportation of energy. Both of these assumptions are
supportd by periodic box DNS. The main result of the above
framework is a correction to the−5/3 law for non-equilibrium
and quasi-isotropic wavenumbers, in cascades far from initial
conditions.

We end this work with a quick comparison of the above
result with the K62 refined theory of Kolmogorov (Kol-
mogorov, 1962) and the spectrum of Pao (1965), both of which
provide corrections to the K41 framework. K62 accounts for
the spatial fluctuations of the small scales in ε . Its physical ar-
gument is therefore different from the current theory which as-
sumes a “balanced” non-equilibrium. Indeed, K62 produces a
drastically different correction to the -5/3 law, than the current
theory. Pao’s correction (Pao, 1965) on the other hand is based
on the speed V that energy is transferred across wavenumbers,
but yields corrections only for the dissipative scales of turbu-
lence, leaving larger eddies, and thus the -5/3 law, unaffected.
These corrections thus differ from the one proposed in this
work and in fact we cannot think of any reason why all three
corrections cannot apply simultaneously.
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