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ABSTRACT
A direct numerical simulation (DNS) of a spatially evolving
turbulent round jet has been conducted at Re0 = 3500 in a very
large box using a fully turbulent pipe flow as an inlet to analyze
classical and new scaling laws from the near up to the far-field.
The primary object of this study is to deepen our knowledge on
turbulent jet flows employing the symmetry based turbulence
theory using the multi-point moment equations (MPME). With
the DNS data the scaling laws derived from Lie symmetry
analysis are validated and extended up to statistical moments
of arbitrary order n. Further investigations show that when fit-
ting the instantaneous moments to a Gaussian function of the
normalized radius r/z, the prefactors of the exponents show
a linear behavior in n. This suggests the existence of an ad-
ditional statistical symmetry which, if confirmed, can only be
found in the MPME rather than in the Navier-Stokes equations.

Introduction
Until today only a few DNS have been conducted for study-
ing the fundamentals of a spatially developing turbulent round
jet. The earliest work using DNS was done by Boersma et al.
(1998) where the research group studied the effect of inflow
conditions on the self-similarity scaling up to z/D = 45 for
a Reynolds number of Re0 = 2400 based on the orifice di-
ameter. In this work, the Navier-Stokes equations are solved
numerically using the Nek5000 code developed by Fischer
et al. (2008). The box of the DNS shall extend axially up to
z/D = 75 to properly investigate not only the near-field but
also the far-field behavior of self-preservation. In other round
jet DNS like Boersma et al. (1998), Babu & Mahesh (2004)
and Taub et al. (2013), top-hat profiles with small disturbances
have been used. However, the transition to turbulence of the
jet usually takes around 10D downstream of the orifice. That
is why in the present DNS a turbulent pipe is used as an in-
let condition to properly capture physics, which to the author’s
knowledge has not yet been reported to study round jets in the
context of self-similarity.
It might have been in Oberlack (2001), where symmetries
have been used in turbulence for the first time to generate in-

variant solutions, which in this context is equivalent to tur-
bulent scaling laws. However, this approach was limited to
the mean velocity, meaning the statistical moment of first or-
der, at that time. This has been extended with Oberlack &
Rosteck (2010), where they recognized that the MPMEs ad-
mit Lie symmetries that do not appear in either the Euler or
the Navier-Stokes equations and are therefore called statistical
symmetries. Usually, when dealing with turbulence statistics
the Reynolds decomposition Ui =U i+ui is used where U i de-
notes the mean velocity and ui the turbulent fluctuations. In the
Reynolds-averaged Navier-Stokes (RANS) model the instan-
taneous moment UiU j is decomposed into U iU j +uiu j where
uiu j is called the Reynolds stress tensor. However, focusing
on the MPMEs based on the instantaneous velocities, an in-
finite set of linear equations are received where the coupling
between the equations is only between ”neighboring” equa-
tions. By introducing Hi j =UiU j and Ri j = uiu j, the omission
of the Reynolds decomposition shall be called the H-approach
and the classical approach is called the R-approach. Addition-
ally, the instantaneous moments of an arbitrary order n can
be introduced with Hi{n} and the correlation at one point with
H0

i{n} = Un
i . By finding symmetries of the MPMEs, invariant

solutions and therefore turbulent scaling laws can be derived
rigorously. In the work of Sadeghi et al. (2018) and Sadeghi
et al. (2021), this method has been used successfully for tem-
porally evolving turbulent plane jets for not only velocity mo-
ments but also passive scalar moments. In addition to that, just
recently in Hoyas et al. (2022) and Oberlack et al. (2022), they
were able to derive turbulent scaling laws with this method for
moments of arbitrary order in two regions of a turbulent chan-
nel flow and validated them with a new DNS of a Poiseuille
channel flow at a friction Reynolds number of 10000.

Governing equations
The governing equations in this work are the Navier-Stokes
equations for an incompressible flow consisting of the conti-
nuity equation

∇ ·U = 0 (1)
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Figure 1: Schematic view of a round jet flow. Fluid is blown through a nozzle with diameter D. The mean axial centerline
velocity at the orifice is denoted by U0 and the axial centerline velocity of the jet is denoted by U z,c

and the momentum balance equations

∂U
∂ t

+(U ·∇)U =−∇P+
1

Re0
∇

2U. (2)

with U, P, x, t being respectively velocity vector, pressure, the
spatial coordinate and time. Further, the Reynolds number is
defined as Re0 = U0D/ν with D and U0 being a length and
velocity scale to be defined below.

DNS of the turbulent jet flow
The Navier-Stokes equations (1) and (2) are solved numer-
ically using Nek5000 developed by Fischer et al. (2008).
Nek5000 is a computational fluid dynamics solver based on
spectral element method (SEM), which is a subclass of the
weighted residuals method and therefore part of the Galerkin
schemes. A thorough description of the numerical method can
be found e.g. in Patera (1984). It uses a weak formulation of
the Navier-Stokes equations and is solved on a hexahedral ele-
ment mesh. SEM uses piecewise high-order Lagrange polyno-
mials as basis functions similar to the finite element method.
To integrate over each element, the Gauss-Lobatto-Legendre
(GLL) integration is used. Besides accuracy, one of the main
reasons for using Nek5000 in this work is the very efficient
parallel implementation needed for the large scale DNS con-
ducted. For optimal efficiency the polynomial order N = 7 is
used as suggested by Fischer et al. (2008). Further, the BDF2
scheme has been used as a timestepping method. The adaptive
timestep is controlled by the Courant number.

Computational domain of the DNS
Previous round jet DNS such as of Boersma et al. (1998),
Babu & Mahesh (2004) and Taub et al. (2013) have employed
top-hat profiles extended by small velocity disturbances as
inlet profiles. The transition to a fully turbulent behavior
of these jet usually take around 10D downstream of the
inlet. For this reason in the present DNS we use a fully
developed turbulent pipe as an inlet condition. Self-similarity
is predicted to occur closer to the inlet and secondly, the inlet
condition is physically more realistic. To accomplish that, the
simulation has been split into two domains. One is that of a
periodic pipe flow to generate the inlet condition and the other
is the main computational domain to capture the turbulent jet
flow.

The presently employed bulk Reynolds number has been
chosen to be Re0 = 3500. The bulk Reynolds number is

defined as follows

Re0 =
UbulkD

ν
(3)

where Ubulk refers to the bulk average velocity at the inlet
in streamwise direction, D to the pipe diameter and therefore
also to the diameter of the inlet nozzle and ν to the viscosity.
Re0 = 3500 has been chosen to lie in a range of a fully tur-
bulent pipe flow and still being computationally feasible with
the available computational resources. The cross-section of
the mesh contains 33 cells. Further, the mesh has 30 cells in
axial direction and extends in that direction for 5D. Factoring
in the N = 7 GLL points, the pipe mesh has around 2 million
grid points. Therefore we have a 1D× 5D (diameter × axial
length) mesh. The boundary conditions at the wall are no-slip
and impermeable wall while at z =−5D and z = 0 periodicity
has been employed.
To generate a turbulent velocity field in the pipe a small distur-
bance in all three direction is added to the initial condition of
a laminar pipe profile

Uz = 6(r2 −R2), with R = 0.5. (4)

Pressure gradient and viscosity are set, such that the bulk ve-
locity is 1 and Re0 = 3500. After running the simulation until
a fully developed turbulent pipe flow has been reached, the
velocities at the cross section z = 0 are interpolated onto the
inlet of the main computational domain at each timestep. The
main computational domain is a truncated cone with the ax-
ial length 75D. At the inlet z/D = 0 the diameter is 4D and
at the outlet z/D = 75 the diameter is 64D. This ensures that
the box is large enough to capture the spreading of the jet and
that there is no interaction with the lateral far-field boundaries.
The main computational mesh consists of two parts: The in-
ner part contains the domain of a pipe and the outer part is
a symmetrical cylindrical mesh which are scaled linearly in
radial direction when moving axially. In axial direction the
cells of both the pipe and the outer part are stretched geomet-
rically with the factor of 1.006 with 234 cells. Around the
inner part, the cells are stretched geometrically in transverse
direction with the factor of 1.06 with 25 cells. Considering the
N = 7 GLL points, the main computational mesh has around
180 thousand cells which amounts to 240 million degrees of
freedom (DOFs). During the simulation, the periodic pipe at
z = 0 is then interpolated onto the main computational domain
at z = 0 so that a fully turbulent pipe inflow is achieved for the
jet. Figure 2 shows isosurfaces of the q-criterion of the con-
ducted jet flow.
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Figure 2: A cross section of q-criterion isosurfaces of the conducted jet DNS colored with the velocity magnitude ranging
from 1.5 (red) to 0 (blue).

0 20 40 60
0

5

10

15

z/D

U
0/

U
z,

c

Present DNS
Boersma et al.
Babu & Mahesh
Taub et al.

Figure 3: Inverse mean axial centerline velocity plotted
over the distance from the orifice. The present DNS at
Re0 = 3500 is compared to various other DNS and ex-
periments.

Classical scaling laws
In classical theory the mean velocities of a self-preserving jet
are scaled with the centerline velocity

Uz,c(z)
U0

=
BuD
z− z0

, (5)

where U0 refers to the mean axial centerline velocity at the
orifice, Bu to the decay constant and z0 to the virtual origin.
The inverse of the mean axial centerline velocity compared to
other DNS and experiments can be depicted in Figure 3. Qual-
itatively, it can already be observed that the present DNS be-
gins decaying earlier than any experiment conducted before.
In Table 1 the parameters of the present DNS and other ex-
periments are linked. It can be seen that the decay rate of the
present DNS is slightly lower compared to the other experi-
ments conducted. Additionally, the virtual origin lies behind
the inlet which is due to early mixing because of the turbulent
inlet.

Table 1: Parameters of the mean axial centerline velocity
compared to other experiments.

Reference Re0 Bu z0

Boersma et al. (1998) 2400 5.9 4.9

Taub et al. (2013) 2000 5.4 1.3

Present 3500 5.29 −1.3

Symmetry based scaling laws
The symmetries needed for the derivation of the scaling laws
are derived from the Euler equations and can be transferred
to the MPMEs with the limit of Re0 → ∞. The MPMEs are
derived by multiplying equation (2) with n−1 velocities at n−
1 different locations xi with a subsequent statistical averaging.
This results in the MPMEs with order n

∂Hi{n}

∂ t
+

n

∑
l=1

∂Hi{n+1}[i(n) 7→k(n)]

[
x(n) 7→ x(l)

]
∂xk(l)

+
∂ Ii{n−1}[l]

∂xi(l)

− 1
Re0

∂ 2Hi{n}

∂xk(l)∂xk(l)

]
= 0 (6)

where

Hi{n} =Ui(1)(x(1)) · ... ·Ui(i)(x(i)) (7)

and Ii{n−1}[l] includes the correlations with the pressure. A
deeper insight into MPMEs can be gained in Oberlack & Ros-
teck (2010).
In the present work, the focus is set on three symmetries. The
first symmetry is a translation in space

T x : t∗ = t, x∗i = xi +axi , r∗i = ri, Ui
∗
=Ui,

H∗
i{n}

= Hi{n} (8)
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and the second symmetry is a scaling in space and time

T t : t∗ = exp(aSt)t, x∗i = exp(aSx)xi, r∗i = exp(aSx)ri,

Ui
∗
= exp(aSx −aSt)Ui, H∗

i{n}
= exp(n(aSx −aSt))Hi{n} ,

P∗ = exp(2(aSx −aSt))P. (9)

The third symmetry is a statistical symmetry, emerging from
the linearity of the MPMEs reading as

T s : t∗ = t, x∗i = xi, r∗i = ri, Ui
∗
= exp(aSs)Ui,

H∗
i{n}

= exp(aSs)Hi{n} . (10)

The symmetries in equation (8)-(10) form the characteristic
condition for a spatially developing turbulent round jet where
subsequently we only consider one-point statistics, i.e. Un

i .
Since a spatially round jet is symmetrical in azimuthal direc-
tion the characteristic condition gives

dz
aSxz+az

=
dr

aSxr
=

dUiU j

[2(aSx −aSt)+aSs]UiU j

=
dUi

[aSx −aSt +aSs]Ui
= ...=

dUn
i

[n(aSx −aSt)+aSs]Un
i
. (11)

By integrating equation (11) the following scaling laws can be
derived:

η =
r

z+ z0
(12a)

Ũ i(η) =
U i(r,z)

(z+ z0)−λ1
(12b)

Ũ2
i (η) =

U2
i (r,z)

(z+ z0)−λ2
(12c)

Ũn
i (η) =

Un
i (r,z)

(z+ z0)n(λ1−λ2)−2λ1+λ2
(12d)

where

z0 =
az

aSx
, λ1 =

aSt

aSx
− aSs

aSx
−1, λ2 = 2

aSt

aSx
− aSs

aSx
−2.

(13)
The constant n refers to the order of the velocity moments. If
n = 1 or n = 2 are respectively introduced into (12d), the mean
velocity scaling in equation (12b) or the second order velocity
moments in equation (12c) are obtained. The free parameters
λ1 and λ2 are the exponents of the first and second velocity
moment. The self-preservation of three axial moments can be
seen in Figure 4.

Validation of the symmetry based scaling laws
In order to validate the symmetry-induced scaling laws of the
velocities we set r = 0 and the equation (12d) needs to be re-
arranged to

Un
i (r = 0,z) =

Ci,n

(z+ z0)n(λ2−λ1)+2λ1−λ2
, for n ≥ 1 & i = r,ϕ,z,

(14)

Table 2: Parameters of equation (15) for each direction
r,ϕ,z.

i αu,i βu,i

r 0.135 1.273

ϕ 0.133 1.270

z 0.683 2.284

where Ũn
i (η = 0) = Ũn

i,c =Ci,n. The virtual origin z0 = 1.276
can be determined by the spreading rate of the first moment
while λ1 = 1.036 and λ2 = 2.068 can be received by fitting the
axial centerline to the first and second moment in z-direction.
All higher moments determine Ci,n which show the relation as
seen in Figure 5. These constants follow the relation

Ci,n = αu,ienβu,i , (15)

quite accurately with R2 = 0.99 for all fits. The constants for
the r and ϕ-direction only differ by around 1.5% as seen in Ta-
ble 2 which is due to symmetry. In conclusion, this means that
the scaling of all moments of arbitrary order can be determined
with

Un
i (r = 0,z) =

αu,ieβu,in

(z+ z0)n(λ2−λ1)+2λ1−λ2
. (16)

Radial scaling of a turbulent round jet
There have been many works e.g. Panchapakesan & Lum-
ley (1993), noticing that the radial profile of the mean axial
velocity (see Figure 4) behaves similar to a Gauss-type pro-
file. However, we have yet to understand where this behav-
ior comes from and if this can be derived from the underlying
equations. Comparing the radial profiles of the higher instan-
taneous axial moments leads to the conclusion that also the
scaled higher axial moments in (12) can be fitted to a Gaussian
which leads to

Ũn
z (η)

Ũn
z,c

= e−γnη2
, (17)

where, when comparing with (12), (15) and (16), we have
Ũn

z,c = Cz,n = αu,zenβu,z . The DNS data up to the tenth axial
moment are presented in Figure 6 where, due to a logarith-
mic scaling, a parabolic exponent of the moments suggests that
equation (17) fits quite well. A very good linear fitting in n of
γn for the axial moments can be taken from Figure 7.
Equation (2) in z-direction can be statistically averaged in its
conservative form and taking the limit of Re0 → ∞ gives

∂UrUz

∂ r
+

∂U2
z

∂ z
= 0. (18)

If then, equations (12) and (17) are implemented in equation
(18) for n = 2 and also using a similar scaling law for UrUz we
obtain ŨrUz(η) =UrUz(r,z)/(z+ z0)

−λ2 , and finally receive

ŨrUz +η
∂ŨrUz

∂η
=C1η

(
λ2 −2γ2η

2
)

e−γ2η2
, (19)
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Figure 4: The radial profiles of the (a) 1st, (b) 2ndand (c) 10th axial moment normalized with the scalings in (12).
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Figure 5: Constants Ci,n according to the equation (15)
are shown for each moment up to order n = 10 for each
direction and determined by fitting to the DNS.
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Figure 6: The radial profiles of the 1st (top) up to the 10th

(bottom) axial moment, normalized with the scaling in
equation (12) and shown in a semi-logarithmic plot at
z = 45.
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Figure 7: Constants γn from equation (17) are shown for
each moment up to order n = 10 determined by fitting to
the DNS yielding the following fit: γn = 48.0n+59.2.

leading to the solution

ŨrUz(η) =
Ũ2

z,c

2γ2η

[(
2γ2η

2 −λ2 +2
)

e−γ2η2
+(λ2 −2)

]
,

(20)

where C1 = Ũ2
z,c and the integration constant C2 = [C1(λ2 −

2)]/(2γ2) have been derived from the boundary condition

limη→0 ŨrUz(η) = 0. Plotting the solution and the DNS data
of UrUz in Figure 8 one can see, that they behave similarly.
Following up on this, that could mean that there is another sta-
tistical symmetry hidden in the MPMEs that we have yet to
find analytically and which could explain the Gaussian behav-
ior of the axial moments.

Conclusion and Outlook
A DNS of a spatially evolving turbulent round jet has been
conducted with a turbulent pipe flow as an inlet at Re0 = 3500.
Contrary to works in the past, a turbulent pipe flow with
Re0 = 3500 has been used as an inlet to shorten the transi-
tion region. Further, new scaling laws for a spatially turbulent
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Figure 8: The radial profiles of UrUz at different distances
z from the orifice compared to the solution in equation
(20).

round jet have been derived for the velocity using Lie symme-
try analysis. The scaling laws are then validated by the DNS.
It has been shown that, the velocity moments are dependent of
7 different parameters. By determining the parameters using
the DNS, all moments up to an arbitrary order are determined
by the scaling laws.
Similarly to previous work, the radial moment scaling has been
fitted to a Gaussian distribution. This also works very well for
the higher moments where a linear behavior of the constant
in the exponent has been detected. With the assumption of
a Gaussian radial scaling and the invariants derived using Lie
symmetry analysis, the radial scaling of UrUz has been derived
which behaves similarly to the DNS data.
The next steps would be to conduct additional DNS with a
higher Reynolds number, at different co-flow rates and differ-
ent inlet conditions (e.g. synthetic jets) to investigate how the
free parameters of the symmetry based scaling laws are influ-
enced. For that, DNS data is needed which can be generated
by modifying the current DNS setup. Also, the analysis of the
radial scaling might suggest the existence of an additional sta-
tistical symmetry that can explain the Gaussian distribution.
Therefore, a deeper analysis of the MPMEs should be under-
taken regarding the existence of additional symmetries. Addi-
tionally, as all symmetries of the moment equations have their
counterpart in the Lundgren-Novikov-Monin probability den-
sity function (PDF) approach, we can also construct turbulent

scaling laws for the PDF functions. Here, it is intended to con-
struct symmetry invariant PDF up to its two-point version and
compare this to the PDF generated from the DNS data.
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