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ABSTRACT
In this work, the focusing of inertial waves emitted by a

vertically vibrating torus in a uniformly rotating fluid has been
investigated by numerical simulation and theoretical analysis.
The primary objective of this study is to explore the localized
generation of turbulence around the focal point.

CONTEXT
In the ocean, due to stably stratified fluid, the energy in-

jected by tidal forces at the surface generates some internal
gravity waves, which interact with the topography. The trans-
fer of this energy into local turbulence occurs due to a fo-
cus of internal gravity waves through two mechanisms (Kly-
mak et al., 2012): wave-topography interaction (remote turbu-
lence) and wave-wave interaction away from the topography
(local turbulence). An idealized configuration such as an os-
cillating torus can reproduce this focus of waves at the apex
of the propagation cone with an angle θ (see figure 1). Sev-
eral studies using internal gravity waves or inertial waves in a
rotating fluid have analyzed this torus configuration by using
numerical simulations of inertial waves (Duran-Matute et al.,
2013), experiments of internal gravity waves (Shmakova &
Flór, 2019), or the theory of internal gravity waves (Voisin
et al., 2011). Based on the theoretical work on an oscillating
sphere by Voisin et al. (2011), Shmakova & Flór (2019) as-
sumed a preferential angle θp at which the amplification of the
amplitude in the focal region is maximal for internal gravity
waves. At this angle θp, the maximum energy of the waves is
transferred to the focus zone and could be converted into local

turbulence. The optimal angle θp is determined here by using
numerical simulation and theoretical analysis.

GOVERNING EQUATIONS
We consider a uniformly rotating fluid with angular veloc-

ity ΩΩΩ, density ρ and kinematic viscosity ν . For low-amplitude
disturbances, the departures of pressure p and velocity uuu from
the undisturbed rotating flow are governed by the linearized
equations of motion in the rotating system (Greenspan, 1968)

∂uuu
∂ t

+2ΩΩΩ×uuu =− 1
ρ

∇p+ν∇
2uuu+ fff , (1)

∇ ·uuu = 0. (2)

Here p represents the reduced pressure, which includes the hy-
drodynamic pressure and the centrifugal force. It is known that
inertial wave can be generated in the rotating flow as a result
of the restoring action of the Coriolis force. The propagation
direction of the wave energy is determined only by the ratio
between the forcing frequency ω f and the rotation rate Ω of
the fluid as following (Sagaut & Cambon, 2008)

θIW = cos−1(ω f /2Ω). (3)

In this work, by using a vertically oscillating ring of Dirac
type to simulate the oscillation of a torus, we force the iner-
tial waves to focus into the apex of the propagation cone (see
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Figure 1. Schematic drawing of the oscillating torus and the
focusing effect of the resulting inertial waves, where a is the
radius of the tube and b the major radius of the torus with
a ≪ b, Ω is the constant angular velocity of the rotating flow.
cccg denotes the group velocity, at which the wave energy prop-
agates, and θ is the propagation angle.

figure 1).
Several non-dimensional numbers have been used to character-
ize the oscillation of the torus in a similar way to what has been
done in stratified fluid (Ermanyuk et al., 2017): the Keulegan-
Carpenter number Ke = A

b , which represents the ratio of the
forcing amplitude to the minor radius of the torus, the Stokes

number St = ω f b2

ν
, the Rossby number Ro =

ω f A
2bΩ

(Davidson,

2013), and the Reynolds number Re =
ω f A·2b

ν
. We adapt this

number in our case of a ring with Dirac-type forcing by chang-
ing b into a.

Next, the theoretical analysis and numerical simulation of
wave focusing will be presented in detail.

METHODS
Theoretical analysis

Let b, Ω−1, U characterize the typical length, time and
relative fluid velocity to the rotating flow. With this, the lin-
earized equation system can be reduced to a dimensionless
form. Furthermore, applying the operator ( ∂ 2

∂ t2 ∇·) to (1) and
taking the continuity equation (2) into account lead to a single
wave-like equation for the pressure p in the form

(
∂

∂ t
−Ek∇

2
)2

∇
2 p+(2nnn ·∇)2 p = 4nnn · (nnn ·∇) fff +

2nnn ·
(

∂

∂ t
−Ek∇

2
)
(∇× fff )+

(
∂

∂ t
−Ek∇

2
)2

(∇ · fff ), (4)

where nnn is a unit vector indicating the direction of the rotation
axis. For the following analysis, we define nnn as the z-axis. The
Ekman number Ek = ν

Ωb2 is a gross measure of the viscous
force compared to the Coriolis force.
In our case, see figure 1, the forcing fff has only one component
in z-direction, which can be described using the Dirac function
in the cylindrical coordinate system as

fz(r,ϕ,z, t) = Aδ (r−1)δ (z)e−iσt . (5)

Here A is a constant line density of the force along the torus,
σ is the ratio between the oscillation frequency ω f of the torus

and the rotation rate Ω of the fluid. This equation can be an-
alytically solved using the Fourier transform. Substituting the
solution for p into the momentum equation (1) yields the so-
lution for velocity uuu. The focusing phenomenon caused by the
the forcing fff is included in the particular solutions, which is
the key topic of the present analysis.
Considering the forcing condition (5), the wave-like equation
for the pressure (4) in a viscous fluid is given by

(
∂

∂ t
−Ek∇

2
)2

∇
2 p+4

∂ 2 p
∂ z2

=Λ0

[
4−

(
σ − iEk∇

2
)2

]
δ (r−1)δ ′(z)e−iσt .

(6)

Using the Fourier transform in cylindrical coordinate system,
we obtain the inhomogeneous solution for the pressure in
Fourier space

p̂(kr,kz, t) = i2πΛ0e−iσt

[
4−

(
σ + iEkκ2)2

]
kzJ0(kr)(

σ + iEkκ2
)2

κ2 −4k2
z

. (7)

Additionally, the transformation of the momentum equation
(1) in z-direction into Fourier space results in the following
scalar equation

(
∂

∂ t
+Ekκ

2
)

ûz =−ikz p̂+ f̂z, (8)

where f̂z = 2πΛ0J0(kr)e−iσt .

Substituting (7) into (8), the inhomogeneous solution of
uz in Fourier space follows as

ûz = i2πΛ0e−iσt J0(kr)k2
r
(
σ + iEkκ2)(

σ + iEkκ2
)2

κ2 −4k2
z

. (9)

Applying the Fourier transform in the cylindrical coordinate
system to the wave-like equation (4) and then inserting the so-
lution of the pressure p into the momentum equation (1), we
obtain the analytical solution of the vertical velocity

uz = e−iσt Λ0

2

∫
∞

0
k3

r J0(kr)J0(rkr) · ei|z|α f1 e−|z|α f2 (10)

× [σ(4−σ2) f1 +4Ekk2
r f2]+ i[4Ekk2

r f1 −σ(4−σ2) f2]

σ(4−σ2)3/2( f 2
1 + f 2

2 )
dkr

where α = σ√
4−σ 2 , and

f1,2 =
kr√

2

√√√√√[
1− 64Ek2k4

r

σ 2(4−σ 2)3

]2

+
1024Ek2k4

r

σ 2(4−σ 2)4 ±
[

1− 64Ek2k4
r

σ 2(4−σ 2)3

]
.

Numerical simulations
Besides the analysis in the previous section, the govern-

ing equations (1) and (2) are solved using the standard pseudo
spectral method in a periodic domain with 2π length cube and
spatial resolution of 5123 points.

We perform 25 linear direct numerical simulations DNS
by varying the angle of inertial waves propagation to know if
there is a propagation angle maximizes the energy in the focus
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Figure 2. Inertial-wave cone excited by the oscillating dirac
torus as depicted by isosurface of uz according to the analytical
solution (10) for inviscid fluid, i.e. Ek= 0.

zone. We keep the viscosity constant ν = 10−4, the ring ra-
dius a = 1, the amplitude of forcing A = 0.01 and frequency of
forcing ω f = 5, in that case Re = ω f A·a

ν
= 500, the Keulegan-

Carpenter number Ke = 0.01 ≪ 1 where the forcing amplitude
is assumed to be smaller than the radius b, and the Stokes num-
ber St = 50000 ≫ 1 as a result of the choice of small viscosity.
Nevertheless we vary the angle of cone in the range of θ = 10◦

to 70◦ by varying the rotating rate 2Ωz = 5.077 to 14.61 and
at the same time Ro =

ω f A
aΩ

varies from 0.019 to 0.0068 (ta-
ble 1). Note that, inertial waves appear in low Reynolds and
low Rossby regime, where in the regime of high Reynolds and
low Rossby, waves-turbulence interactions occur according to
Godeferd & Moisy (2015).

In the second set of simulations, we perform 5 linear sim-
ulations using a solid body with a three-dimensional torus
shape. By using a penalisation method as done by Duran-
Matute et al. (2013), we force the torus body to oscillate verti-
cally and we vary the propagation angle.

The parameters of this set is chosen to be, the viscos-
ity ν = 10−5, the amplitude of forcing A = 0.0157 and the
frequency of forcing ω f = 1.256. With using torus geome-
try as following, minor radius of b = 0.0942 and major radius
a = 0.848, by varying the rotating rate 2Ωz = 1.996 to 2.44,
we vary the angle θ between 51◦ and 59◦, see table 1. The
resulting non-dimensional numbers, i.e. the Reynolds num-
ber Re = 372, the Rossby number which varies between 0.085
and 0.105, the Stokes number St = 1115, and the Keulegan-
Carpenter number Ke = 0.167.

RESULTS
Viscous spreading on the focus zone

We evaluated the integral with respect to kr in (10) numer-
ically and plotted the solution. Figure 2 shows the isosurface
of uz for the inviscid case Ek= 0. Figure 3 shows the dis-
tribution of the vertical velocity amplitude according to (10)
in the vertical plane (r,z) for σ = 1 and the Ekman number
Ek= 0,10−5, 10−4 and 10−3, respectively. Due to symmetry,
we only present the propagation of the wave beam in one quad-
rant. The result shows that as the value of the Ekman number
increases, the effect of viscous attenuation becomes stronger,
which leads to a rapid dissipation of energy during the prop-
agation. As a result, with increasing viscosity the focal zone

becomes increasingly blurred, the amplitude of the waves is
greatly reduced and the position of the maximum amplitude of
uz moves in the negative direction of the z-axis.
In order to be able to analyze the viscous effect described in
(10) more intuitively, we further simplify it by introducing the
assumption of small Ekman number, i.e. Ek ≪ 1. Using Tay-
lor expansion and neglecting all terms with O(Ek2), f1 and f2
can be simplified to the following approximations

f1 ≈ kr, (11a)

f2 ≈
16Ekk3

r
σ(4−σ2)2 . (11b)

Correspondingly, the solution of uz in (10) can be simply ex-
pressed as

uz ≈ e−iσt
∫ k̄r

0
Aei(|z|αkr−ψ)e−|z|αβk3

r dkr (12)

with

A =
Λ0α

2σ
k2

r J0(kr)J0(rkr), (13a)

ψ = arctan
4σEkk2

r
(4−σ2)2 , (13b)

β =
16Ek

σ(4−σ2)2 . (13c)

Here A denotes the amplitude as in the inviscid fluid, ψ repre-
sents the phase shift and β a factor of viscous effect. It is to be
noted that both ψ and β are affected not only by the viscosity
but also by the forcing frequency. The larger ψ and β are, the
wider is the wave beam and weaker is the focusing effect.
At the focal point, where r = 0 and |z| = 1/α , the effect
of viscous attenuation is actually dominated by the factor
e−βk3

r , which decays rapidly as kr increases. Fig. 4 shows,
the exponential function e−βk3

r converges to zero at a smaller
wavenumber kr with increasing value of Ek as well as σ → 0
and σ → 2. For this we postulate the existence of a cut-
off wavenumber k̄r so that viscous attenuation eliminates all
waves with the wavenumbers that are significantly greater than
k̄r. In numerical evaluation, an attenuation factor e−c can be
predefined, where the constant c is used to control the preci-
sion of the integration result. As an example, the choice of
c = 10 corresponds to an attenuation factor e−c ≈ 4.5×10−5,
which may be sufficiently small for applications. The value of
cutoff wavenumber k̄r of the function e−βk3

r corresponding to
the chosen attenuation factor e−c can be reasonably estimated
by

k̄r =

(
c
β

)1/3
=

[
cσ(4−σ2)2

16Ek

]1/3

. (14)

Equation (14) shows that for the same non-dimensional forc-
ing frequency σ , the cutoff wavenumber k̄r decreases with a
scaling proportional to Ek1/3. Furthermore, for the same value
of Ek, the cutoff wavenumber k̄r also tends to zero as the σ → 0
and σ → 2, which corresponds to disappearance of focusing
phenomenon.
Fig. 5 shows the change of the amplitude of the vertical ve-
locity at the focal point with the Ekman numbers Ek and the
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DNS 2Ωz θ Ro =
ω f A
(a)Ω

1 5.077 10◦ 0.019

2 5.32 20◦ 0.018

3 5.77 30◦ 0.017

4 6.52 40◦ 0.0153

5 6.62 41◦ 0.0151
...

...
...

...

24 10 60◦ 0.01

25 14.61 70◦ 0.0068

DNS 2Ωz θ Ro =
ω f A
(b)Ω

26 1.9968 51◦ 0.105

27 2.088 53◦ 0.1

28 2.1908 55◦ 0.095

29 2.307 57◦ 0.09

30 2.44 59◦ 0.085

Table 1. Simulation parameters for Linear DNS for ring of Dirac forcing on the left from number 1 to number 25, and solid body
torus forcing on the right from number 26 to number 30.
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Figure 3. Amplitude of the vertical velocity in the vertical plane according to equation (10) for σ = 1 in a viscous fluid with the
Ekman number (a) Ek= 0, (b) Ek= 0.10−5, (c) Ek= 10−4 and (d) Ek= 10−3, respectively.

Figure 4. Plot of the function e−βk3
r defined in equation (13c) with the change of σ and kr for the Ekman number (a) Ek = 10−5, (b)

Ek = 10−4 and (c) Ek = 10−3, respectively.

dimensionless forcing frequency σ . It is easy to understand
that the focusing phenomenon disappears when σ tends to 0,
because in this case the waves propagate in vertical direction
along the cylindrical surface on which the oscillating torus is
located according to Eq. (3) and thus do not focus on the z-axis.
However, the disappearance of wave focusing at σ → 2 is lim-
ited to the case where the external force is present only in the

z direction. Furthermore, σ → 2 corresponds also to the case
with an infinitely large viscous effect as described in (13c),
so that the energy is rapidly dissipated during propagation and
cannot be focused effectively. Additionally, For forcing fre-
quency close to the angular velocity of rotating fluid, i.e. σ

is close to 1, the amplitude of the vertical velocity at the fo-
cal point reaches its maximum, which corresponds to a wave
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Figure 5. Amplitude of the vertical velocity at the focal point
in a viscous fluid with a slight lowering compared its position
in an inviscid fluid (r = 0, z = 1/α) as a function of the di-
mensionless frequency σ from 0 to 2 and the Ekman number
Ek from 10−5 to 10−3.

propagation angle slightly less than 60◦ due to viscous effects.
Since the theoretical solution is very complicated, this prefer-
ential angle will be further investigated by numerical simula-
tion.

Transfer to vertical velocity
To compare with the theoretical results, we first simu-

late the vertical velocity distribution. Figure 6 shows a two-
dimensional cut of the vertical velocity uz contour in the verti-
cal plane, where the rays of inertial waves form a double cone
with two focal points. This phenomenon is consistent with the
theoretical results. Furthermore, for each simulation forced
with a vertically oscillating ring of Dirac forcing, we extract
the vertical velocity uz of the focus zone as a function of time.
The theoretical position of the focus point is Z f = a · tan(θ),
so for each simulation we extract a small cube of the velocities
of the theoretical focus point and its neighborhood, the cube
has 4 grid cells in each direction. For each point, we obtain the
signal of vertical velocity. Extracting the amplitudes and then
averaging them, we obtain the amplitude reported on figure 7
for each angle θ . We observe that there is a vertical velocity
focusing maximum where the angle θ = 55◦ maximizes the
vertical velocity at the focus zone. For the case of torus body
forcing simulations, the averaged vertical velocity amplitude
for each simulation is obtained, and a maximum of the focus-
ing of the velocity is observed in the simulation at θ = 57◦.

In the stratified fluid the dispersion relation is given as
θIGW = ±N sin−1(ω/N), where N is the Brunt–Väisälä fre-
quency, while in the rotating fluid the dispersion relation is
θIW =±cos−1(ω/2Ω) as defined in equation (3). In the work
of Shmakova & Flor (2019), it was demonstrated that the an-
gle at which the maximum energy is extracted into the focus
zone in the case of a stratified fluid is θIGW = 35◦ for internal
gravity wave, so it is coherent to have θIW = θIGW −90◦.

Geostrophic mode
The solution of the vertical velocity using the torus body

forcing shows that a stationary geostrophic mode develops in
the flow, vertically elongated above and below the torus body,
see figure 8. This geostrophic mode is dominating in the mean
flow. In the mean flow, we observe two clockwise and coun-
terclockwise rotating cylinders with radius similar to the torus

Figure 6. 2D cut of the vertical velocity uz contour from DNS
using the parameters number 19 in table 1.

Figure 7. The normalized amplitude of the vertical velocity
component uz in the focus zone as a function in the waves
propagation angle θ . Comparison of the analytical solution in
(10) for Ek= 10−4 with DNS of the parameters from number
1 to number 25 listed in table 1.

major radius. The geostrophic mode appears also in the ocean,
where the Coriolis force is balanced by the pressure gradient
(Davidson, 2013).

CONCLUSION AND OUTLOOK
Both our analytical and numerical result show that the

rays of inertial wave emitted by a vertically vibrating torus
form a double cone symmetric about the torus with two fo-
cal points, where the wave amplitude has a maximum due to
wave focusing. This phenomenon is in good agreement with
the experimental and numerical study by Duran-Matute et al.
(2013). Furthermore, we have analyzed the the effect of vis-
cous spreading on the focus zone. The result shows that as
the Ekman number increases, the wave beam becomes wider,
the focusing effect becomes weaker, and focus zone moves to-
wards the negative direction of the z- axis compared with the
case of an inviscid fluid. Moreover, our numerical simulation
shows that the inertial waves are able to extract the maximum
energy of focusing at an angle of θIW = 55◦. Based on the
results obtained in this work, we are presently analyzing the
focusing of inertial waves in the fully nonlinear regime and
explore the localized generation of turbulence around the fo-
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Figure 8. Vertical averaged velocity on the vertical plane and
horizontal averaged velocity on the horizontal plane from DNS
using the parameters number 29 in table 1.

cal point.
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