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INTRODUCTION

The full characterization of complex turbulent flows
is a challenging task in industrial applications. On the
one hand, scale-resolving computational fluid dynamics ap-
proaches, such as Direct Numerical Simulations (DNS) or
Large Eddy Simulations (LES), allow accurate estimation of
time-averaged and fluctuating quantities but they become very
expensive for flows with increasing Reynolds numbers. There-
fore, small-scale structures are often not fully resolved but
modeled, which raises the issue of fidelity. On the other
hand, experimental techniques may provide accurate infor-
mation about the full complexity of flows of interest. How-
ever, spatial and temporal resolution of measurements is often
sparse and/or limited to certain quantities, while boundary or
freestream conditions are often hard to characterize precisely.

Data assimilation techniques (Hayase, 2015) are increas-
ingly considered to overcome the above-mentioned respective
limitations, combining advantages of numerical and experi-
mental approaches. It aims at merging experimental and nu-
merical results in order to compensate for model and param-
eter uncertainties in numerical simulations on the one hand,
and to provide a full flow estimation from limited experimen-
tal data on the other hand. The outcome of data assimilation is
thus an augmented flow prediction that combines the fidelity
of the experimental/reference data and the comprehensive de-
scription that is offered by numerical simulation.

State-of-the-art data assimilation techniques include vari-
ational approaches, which rely on adjoint models to minimize
discrepancies between measurements and numerical flow esti-
mation, and Kalman filter-based methodologies, which are de-
rived from a Bayesian formulation of data assimilation. While
these two types of techniques may benefit from strong mathe-
matical foundations, their application requires large computa-
tional costs, which may be of the order of one hundred baseline
simulations. The costs of variational approaches are mainly
driven by the number of optimization iterations to ensure con-
vergence (Yegavian et al., 2015), while the computational re-
quirements of Kalman filters are due to the need of propagat-
ing uncertainties in the flow state estimation, possibly through
Monte-Carlo techniques (Mons et al., 2016). In any case, the
above-mentioned computation cost may hinder the application
of these data-assimilation techniques for complex flows.

In the present contribution, we study the use of an alter-
native and possibly over-looked data assimilation approach,
namely nudging (Lakshmivarahan & Lewis, 2013), which may
also be referred to as state observer in the literature (Hayase,
2015). It consists in adding a forcing term to the governing

flow equations that is proportional to the difference between
reference data and numerical prediction. As such, the assimila-
tion of data with state observer techniques is straightforward to
implement and virtually induces no supplementary cost com-
pared to a baseline simulation. It has recently regained interest
in numerical (Zerfas et al., 2019) and experimental fluid me-
chanics (Saredi et al., 2021) due to its good performances in
state estimation from limited data, in particular in the case of
fundamental turbulent flows (Di Leoni et al., 2020).

In the present study, we are interested by improving the
estimation of turbulent mean-flows as modeled with Reynolds
Averaged Navier-Stokes (RANS) equations thanks to the as-
similation of sparse pointwise velocity. This objective was re-
cently addressed by Zauner et al. (2022) for the mean-flow ve-
locity around a square cylinder at the diameter-based Reynolds
number Re = 22000. Results of direct numerical simulations
exhibit broad-band high-frequency Kelvin-Helmholtz fluctua-
tions in the shear layers that emerge at the leading-edge cor-
ners of the square cylinder, as well as low-frequency quasi-
periodic vortex shedding in its wake. Simulations based
on the Unsteady Reynolds Averaged Navier-Stokes equations
(URANS), such as those performed with the turbulent Spalart-
Allmaras model (Spalart & Allmaras, 1994), predict low-
frequency periodic-oscillation of the wake but fail to capture
the high-frequency fluctuations (Iaccarino et al., 2003). Re-
cently, Zauner et al. (2022) have shown that the assimilation of
spanwise- and time-averaged pointwise velocity data (which
were extracted from DNS) into an URANS model allows to
improve the low-frequency prediction but also to capture the
high-frequency fluctuations of the shear layers. As for a wide
range of aerospace applications mean-flow estimates are often
sufficient, we here investigate the state-observer assimilation
of pointwise velocities into a steady RANS model. Besides
the fact that solving such a steady model is more computation-
aly efficient than its unsteady counterpart, the state-observer
assimilation technique only requires time-independent and av-
erage pointwise velocity data. One of the difficulty raised by
the assimilation of pointwise velocity data is the appearance
of spurious flow oscillations around the measurement loca-
tions, as observed by Zauner et al. (2022) in the framework of
unsteady data-assimilation. Following Azouani et al. (2014);
Zerfas et al. (2019); Rebholz & Zerfas (2021), they used an
interpolant-based approach to reduce that detrimental effect on
the unsteady flow estimation. We thus here propose to inves-
tigate this interpolant-based approach in the present context
of assimilation of time-averaged pointwise velocities based on
RANS.
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The manuscript is organized in two parts. Section 1 de-
scribes the flow configuration, the numerical methods and the
results of standard RANS models. Section 2 is dedicated to
the state-observer assimilation method and its application to
the turbulent flow estimation around a square cylinder. The
pointwise- and interpolant-based approaches are first exposed,
the influences of the choice of the nudging coefficient and dis-
tance between measurements are then investigated, before con-
cluding with a comparison between steady and unsteady data
assimilation.

1 TURBULENT FLOW PREDICTION WITH THE

STANDARD MODEL

We investigate the turbulent flow around a square cylin-
der at Reynolds number Re = U.D/v = 22000, where V is the
kinematic viscosity, U is the upstream uniform velocity and
D is the cylinder’s diameter. The origin of the cartesian co-
ordinate system (x,y) is located at the center of the cylinder.
Hereinafter, all the spatial coordinates and flow variables are
made non-dimensional using D as length scale, Us. as velocity
scale, and pD? as mass scale (per unit length), where p is the
fluid density.

Three-dimensional Direct Numerical Simulation (DNS)
of the flow, that is turbulent in the wake of the square cylin-
der, were performed by Dandois et al. (2018) with ONERA’s
FastS solver. The unsteady flow variables were spanwise- and
time-averaged to generate the two-dimensional mean-flow ve-
locity u,, which is shown in figure 1(a). It is used not only
as a reference mean-flow but also to generate synthetic point-
wise observations, as detailed later. The iso-contours of the
streamwise velocity, displayed in the figure, clearly indicate
the existence of a short symmetric recirculation region down-
stream the square cylinder, that extends up to x = 0.95. A
computationally efficient way to estimate this mean-flow is
to solve the following two-dimensional Reynolds-Averaged-
Navier-Stokes equations

(u-V)u+Vp—V. {2 (Rie+v,(o)) S(u)} =0 ()
Vou=0,

where u = (u,v) and p denote the mean velocity vector and
pressure, respectively. To obtain the above equations, the
Boussinesq assumption has been used to express the Reynolds
stress tensor as a function of S(u), denoting the strain-rate
tensor of the mean velocity. The (non-dimensional) eddy-
viscosity field v; is thus introduced in the momentum equa-
tions. In the present study, it depends on the variable V satis-
fying the following Spalart-Allmaras equation

(u-V)v = s(v,u), 2)

where s refers to the source, diffusion and dissipation terms
(Spalart & Allmaras, 1994).

For this convection-dominated flow, the Streamline Up-
wind Petrov Galerkin (SUPG) finite-element method (Brooks
& Hughes, 1982) is used to discretize the standard RANS
equations (1) and (2). The rectangular computational domain
is defined in —10 < x < 15 and —10 <y < 10. An anisotropic
mesh adaptation based on the reference mean velocity and
pressure (Fabre et al., 2018) is performed to obtain the mesh
made of triangles for a total of ~ 5-10* vertices that is used

hereinafter. The discretized non-linear equations, obtained us-
ing the FreeFEM open-source software (Hecht, 2012), are then
solved using a quasi Newton method. At the k' iteration of
this algorithm, a linearized problem around the current solu-
tion (uf, p¥,vK) is solved with a direct LU solver, yielding
the correction (Suk7 8pk,8¥K). The solution is then updated
as (U1 pAtl gkl ok (Suk §pk §VF), where the coeffi-
cient ¥¥ is progressively increased with the number of iter-
ations, unlike for the Newton method where it is kept fixed
to ¥ = 1. This quasi-Newton method is crucial to avoid di-
vergence of the algorithm, especially when considering the
nudging approach described in the next section. At the inlet,
the boundary condition (u,v,V) = (1,0,0) is imposed. At the
cylinder surface, the no-slip boundary condition u = 0 is en-
forced in conjunction with V = 0. The conditions % =0 and

2(Re' 4 v;)S(u) -n— pn = 0 are used at the outlet, where n
denotes the normal vector. At the top and bottom boundaries,
symmetry conditions are imposed according to (‘3—; ,V, ‘3—;7) =0.

Figure 1(b) displays isocontours of the streamwise mean-
flow velocity obtained by solving the RANS equations (1) with
the Spalart-Allmaras turbulent model (2). A symmetric recir-
culation region is also obtained in the wake of the square cylin-
der, but of much larger extent (up to x = 3.90) compared to the
reference mean-flow (up to (up to x = 0.96, see figure 6-b).
The absolute value of the discrepancy between the two veloc-
ity fields is depicted in figure 1(c). The large error in the wake
is in agreement with the over-predicted extent of the recircula-
tion region and can be explained by insufficient dissipation in
the Spalart-Allmaras turbulence model. The objective of the
present study is to improve the estimation of the mean-flow
based on the SA-RANS model using state observer data as-
similation and synthetic sparse measurements of the reference
mean-flow, as described in the next section.

2 TURBULENT FLOW ESTIMATION WITH
STATE OBSERVER ASSIMILATION OF
POINTWISE VELOCITY
To improve the estimation of the turbulent mean flow

based on the RANS equations, a state observer technique is in-

vestigated for the assimilation of pointwise velocity measure-

ments of the reference mean flow u,.

The two components of the velocity fields are extracted as

a set of M discrete points (X;);=1...,s. As shown in figure 2(a),

they are here equally spaced in a measurement domain denoted

Q,, that will be specified later. The distance between those

measurements is denoted d. The data vector m, which gathers

these pointwise velocity measurements is formally defined as

m = (u,), 3)

where 7 is the so-called measurement operator. Unlike other
data-assimilation method relying on optimization techniques,
the velocity data vector is directly injected into the momentum
equations (1), yielding

1 -
= yS[m— 22 (uy)], @
where uy and py denote the reconstructed velocity and pres-

sure fields. The right-hand-side term is a source term propor-
tional to the error between the measurement of the velocity
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Figure 1: Streamwise velocity of (a) the spanwise- and time-averaged flow obtained from Direct Numerical Simulations
(DNS) and (b) the mean-flow computed as solution of the standard Reynolds Averaged Navier-Stokes (RANS) equations
using the turbulent Sparlat-Allamaras model. (c) Magnitude of the discrepancies between the DNS and RANS mean-

velocity fields.
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Figure 2: (a) Punctual measurements. (b,c) Linear interpolation of the measurements in (a) on two symmetric triangular
meshes. Note that a layer is added to the mesh shown (c) but the values corresponding to the external nodes are set to
zero, allowing a smoother interpolation at the boundaries of the measurement domain. Second, third and fourth rows
correspond to the forcing .# [m — J# (uy)] in (4), the streamwise velocity of the reconstructed solution, and corresponding
error velocity field with respect to the reference (DNS) solution, respectively, using the punctual measurements shown in
(a) (first column), or the linear interpolation shown in (b,c) (second and third columns).

field estimated with the RANS model and the data vector. The
coefficient y allows to vary the magnitude of this source term,
while the operator .# is introduced to map the pointwise error
to the space of velocity estimated by the RANS model. Var-
ious choices for this operator are investigated in the present
study.

The first one is the dual measurement operator, i.e. . = ..
In that case, the forcing in the momentum equations is lo-
calized around the measurement points, as shown in figure
2(d). Such forcing may induce spurious structures in the re-

constructed flow, as noticed by Zauner et al. (2022), when
investigating assimilation of sparse unsteady velocity in un-
steady RANS models. In the present study, these spurious os-
cillations are also observed in the reconstructed mean velocity
displayed in figure 2(g).

Interpolant-based nudging as proposed by Azouani et al.
(2014) is a simple way to get a smoother forcing and recon-
structed flow. In that case, the operator .# can be defined as
the product of two operators, i.e. .¥ = .#.Z, where .Z is an
interpolation of the measurement points in the measurement



12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan (Online), July 19-22, 2022

(a)

-2
107k - L L

(b)

10

Figure 3: Evolution of the global velocity error Eg in (6) as a function of (a) the nudging coefficient y (for d = 0.5) and (b)
the measurement distance d (for y = 10). Circle and square symbols respectively denote extrapolation and interpolation
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Figure 4: Effect of the nudging coefficient y. (a-c) Streamwise velocity of the reconstructed field using equally-spaced
measurements (d = 0.5) and (d-f) error velocity field to the reference (DNS) solution for (a,d) y = 0.1, (b,e) y=1 and

(. v = 10.

space and .# performs a mapping from the measurement to
the solution space, as detailed in the following. In the present
study, these operators are defined after discretization of the
governing equations with the finite element method described
in the previous section. The measurement domain €, is dis-
cretized using a Delaunay triangulation of the set of measure-
ment points, as shown by the grid displayed in figure 2(b). This
grid is symmetric with respect to the y = 0 axis so as to obtain
a momentum forcing that satisfies the reflectional flow sym-
metry (see figure 2-e). Although we do not elaborate more on
that point in the following, we still remark that satisfying this
forcing symmetry is crucial to obtain accurate flow reconstruc-
tion, especially in case of very sparse data measurements. The
linear interpolation of the data measurement is then obtained
using the linear Lagrange finite element function defined on
this mesh. For the streamwise reference velocity, it is defined
as

M . .
Lup(x) =Y mi0,(x), )
i=1

where ¢} (x) are the Lagrange P1 elements defined on the mea-
surement grid. Using the definition of Lagrange elements, we
obtain that the interpolated function at measurement points is
equal to the measurement data, i.e. .Zu,(x;) = mj,. Thanks

to the operator .#, the forcing in the momentum equation is
finally obtained by an interpolation of the velocity error from
the measurement mesh to the solution mesh. More details can
be found in appendix B in Zauner et al. (2022). The interest
of the interpolant-based approach compared to the pointwise-
based approach is clearly revealed when examining the inter-
polated function and forcing displayed in figures 2(b) and (e),
respectively, that are now distributed in the measurement do-
main. This prevents from the appearance of spurious oscilla-
tions in the reconstructed solution, as shown in 2(h). A minor
drawback of this approach is that, for errors of same magni-
tude, those located at the boundaries of the measurement do-
main tend to be larger than those located inside the measure-
ment domain. This effect is simply due to the shape of the fi-
nite element functions ¢,i(x) corresponding to boundary nodes
i, that vanish non-smoothly out of the measurement domain.
Since the forcing function is discontinuous at the boundaries
of the measurement domain, the iso-contours of the recon-
structed velocity exhibit abrupt spatial variations around the
boundaries of the measurement domain. This is particularly
visible in figure 2(e) at the top and bottom boundaries of the
measurement domain. To suppress that effect, we propose to
extend the boundaries of the measurement mesh by one layer
in every direction, as shown in figure 2(c). The additional
nodes located at the boundaries of this new mesh are ghost
nodes where the interpolated solution vanishes, as shown in
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figure 2(c). Thus, they are not associated to new measurement
data. They are rather added to obtain finite-element functions
at the boundary nodes that smoothly vanish to zero. The new
forcing function and reconstructed solution, shown in figure
2(f) and (i), respectively, are thus smoother around the bound-
aries of the measurement domain. When comparing the error
distributions shown in figure 2(j,k,l) for the three approaches
described above, we may conclude that the interpolant-based
approaches provide a significant improvement of the velocity
reconstruction inside the measurement domain by suppress-
ing spurious oscillations related to the pointwise nature of the
measurements. The one-layer extension of the measurement
grid allows to further reduce the errors not only around the
boundaries of the measurement domain but also further down-
stream. In the rest of the paper, we will focus on results ob-
tained with that last approach.

We now examine the effect of the parameter y on the accu-
racy of the flow reconstruction when using measurements that
are equally spaced by the distance d = 0.5 in the domain Q,,
defined as —1 <x <4 and —1.5 <y < 1.5. To that aim, we
introduce the ratio of global velocity errors defined as

0=
~
—
Q
—~
=
=
—~
Ls)
=
o
—_
(S]]
~
=)}
N

B = | [ etwn(o2]

where e(uy)(x) = \/(uy— ur)?+ (vy—vy)? is the local error
of the reconstructed velocity field uy = (uy,vy). The denom-
inator corresponds to the error of the RANS solution. The
spatial domain €, can be the measurement domain Q,, when
investigating the interpolation error or defined as —3 <x < 10
and —5 <y <5, when investigating the extrapolation error.
Both errors are plotted in figure 3(a) as a function of the pa-
rameter ¥, using circles for the interpolation error and squares
for the extrapolation error. In both cases, a notable decrease of
the error is observed for ¥ > 0.01 with a saturation observed for
¥ ~ 10. For large values of 7, the extrapolation error becomes
slightly dominant, as observed in Zauner et al. (2022). The re-
constructed velocity u(7y) and the distribution of the local error
e(uy) are displayed in figure 4 for (a,d) y= 0.1, (b,e) y=1 and
(c,f) Y =10. When increasing the value of 7, the size of the
recirculation region clearly decreases and gets closer to that of
the reference mean-flow. For y = 10, the local error is below
0.1 everywhere in the wake of the cylinder. The largest value
(around 0.4) is obtained around the shear layers existing at the
top and bottom of the square cylinder. In these regions, the ve-
locity gradients in the reference mean flow are strong and the
linear-interpolation of measurements spaced by half a cylinder
diameter (d = 0.5) is insufficient to improve the mean-flow es-
timation.

Looking at figure 3(b) showing the global interpolation and
extrapolation errors as functions of d, decreasing the distance
between measurements below d = 0.5 has only minor effect
on the reconstructed flow velocity in the far wake. There-
fore, we will focus on the near wake region of the square
cylinder. Figure 5 displays (a,d,g) the interpolated measure-
ments, (b,e,h) the reconstructed velocity and (c,f,i) the error
field for measurement distances (a-c) d = 0.5, (d-f) d = 0.25,
and (g-i) d = 0.125. The decrease of the error is significant
for d = 0.125 and velocity gradients in the shear layers are
now more accurately reconstructed. Local errors outside of
the boundary layer drop well below 0.3, which is particularly
evident in the near-wake region. The recirculation region de-
lineated by the black curve in (h) approximates time-averaged
DNS data reasonably well. The recirculation length extends

up to x = 1, which is still slightly larger compared to the
DNS result of 0.96. It may be worth noting that d = 0.125
remains a measurement resolution that is coarse compared
to the flow structures close to the cylinder. In other words,
measurements alone, even in this case, can clearly not fully
characterize the flow, and interpolant-based nudging based on
RANS here enables more accurate evaluation of high-gradient
regions. Within the boundary layers, however, we still observe
increased levels of velocity errors.

For separated flow configurations, unsteady RANS model
can significantly improve the accuracy of the mean-flow es-
timation, as shown by laccarino et al. (2003). Indeed, the
component of the Reynolds stress tensor induced by the low-
frequency fluctuations strongly contributes to reduce the size
of the mean flow recirculation. Recently, Zauner et al. (2022)
performed the assimilation of unsteady pointwise velocity with
the URANS model. Figure 6(b) show the streamwise velocity
of the mean flow obtained with the unsteady data-assimilation
of pointwise uniform measurements, distributed in the domain
—1.5<x<3and —1.5 <y < 1.5 with a spacing of d = 1.5.
The results obtained using the present steady data-assimilation
approach are shown in Figure 6(a). Despite a significant im-
provement of the mean-flow estimation obtained with RANS
model, we should note that the nudged URANS simulations
provide better results and refer to Zauner et al. (2022) for fur-
ther discussion.

CONCLUSION

The present investigation of steady data assimilation sug-
gests great potential using an interpolant-based nudging ap-
proach. Using sufficiently well-resolved velocity measure-
ments, it can reduce errors near the cylinder by more than one
order of magnitude, even if it is less accurate than the more-
expensive unsteady nudging approach. The comparison of
this highly-efficient data-assimilation method with variational
data-assimilation approaches deserves further investigations,
especially for turbulent flow configurations that do not ex-
hibit low-frequency fluctuations, as the backward-facing step
(Franceschini et al., 2020) or the periodic hill (Volpiani et al.,
2021).
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