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ABSTRACT
We explore the dependence of the normalised turbulence

dissipation rate Cε on the local Taylor length-based Reynolds
number Reλ and its relation to two-point statistics, using DNS
data of planar wakes generated by pairs of square prisms.
Power laws relating Cε and Reλ are found across the whole
breadth of the wake as well as in the direction of the mean
flow. A recent theory of inhomogeneous turbulence is con-
fronted to this dataset. In the case where the two square prisms
are not too close to each other, the theory provides satisfactory
collapse of the second order structure functions even where
the turbulence is highly inhomogeneous. Our results sug-
gest that the theory could benefit from explicitly incorporating
mean flow inhomogeneity in order to broaden its applicability,
since we find the largest Reynolds numbers precisely where
the mean flow is most inhomogeneous.

INTRODUCTION
In free shear flows such as turbulent wakes, intense tur-

bulence is produced by immersing solid bodies in an other-
wise undisturbed flow. The resulting flows are often populated
by coherent structures which interact with the turbulence in a
non-trivial manner, introducing long range correlations, both
in space and time. The turbulent cascade that ensues is funda-
mentally different from the classical homogeneous, isotropic
and statistically stationary cascade (Thiesset & Danaila, 2020).

There is, however, some common ground between these
two classes of turbulence: most notably, the infamous −5/3
spectral power law of the velocity spectrum which has been
reported in a plethora of flows where the turbulence is demon-
strably non-conforming with the assumptions involved in
the classical theory of Kolmogorov (Kraichnan, 1974; Alves
Portela et al., 2017).

Such departure from a classical cascade is encapsulated
in the dependence of the normalised dissipation Cε = εU 3/L
on global and local Reynolds numbers

Cε ∝
(√

Re∞
Reλ

)p

, (1)

which reflects the non-equilibrium between inertial range en-
ergy exchanges and the turbulence dissipation rate.

The non-equilibrium relation given by eq. (1) has been re-
ported in a broad variety of flows (see Vassilicos, 2015; Ortiz-
Tarin et al., 2021, and references therein) by probing the con-
current evolution of Cε and Reλ (the local Taylor length-based
Reynolds number) in the direction of the mean flow or in time.
Recently, however, Chen et al. (2021) reported Cε ∝ Re−1.5

λ

by measuring those two quantities along the breadth of pla-
nar wakes generated by pairs of square prisms. In a follow-up
work, Chen & Vassilicos (2022) presented a theory of inho-
mogeneous turbulence which retrieves the 2/3 scaling of the
second order structure function by taking into account the spa-
tial inhomogeneity of Cε and Reλ :

δu2 = k
( r

L

)2/3
f
(

r
ℓi

)
. (2)

This scaling is different from the Kolmogorov scaling
(εr)2/3 f (r/η) because ε does not scale as k3/2/L . The au-
thors also argue that eq. (2) could hold both for the stream-wise
and cross-stream velocity components, respectively u1 and u2,
which they confirm with their experiments, so long as mean
flow inhomogeneity is not significant.

The theory of Chen & Vassilicos (2022) makes use of a
generalised scale-by-scale energy budget which distinguishes
between exchanges in physical (X) and scale space (r)
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+ν
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(
∂

∂X2
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∂

∂ r2
i

)
⟨(δu1)

2⟩︸ ︷︷ ︸
Du

−σε1, (3)

where the σ and δ symbols denote the two-point half-sum
and half-difference, respectively, and ui = ⟨ui⟩+u′i. Inner and
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Figure 1: Problem dimensions in terms of the squares
size d.

outer length scales ℓi and L ) are then introduced to establish
inner and outer balances from eq. (3). By introducing some
assumptions on the structure of these balances and requiring
dissipation to scale both in terms of inner and outer quanti-
ties (all of which effectively replace Kolmogorov’s similarity
hypotheses) one can then obtain eq. (2).

In the present contribution, DNS of planar wakes gener-
ated by pairs of square prisms at Re∞ = 5000, for two different
spacings between the prisms, were carried out. This database
allows us to see some of the boundaries of applicability of the
theory introduced in Chen & Vassilicos (2022) by accessing
information not available to Chen et al. (2021) such as the full
velocity gradient tensor and the out-of-plane velocity compo-
nent. This allows us to go beyond the experiments by directly
computing all the terms involved in eq. (3).

NUMERICAL SETUP

The incompressible Navier-Stokes equations are solved
using Incompact3d, an open-source solver developed by
Bartholomew et al. (2020). The spatial discretisation uses 6th
order compact differences whereas the time integration is car-
ried out with a 3rd order Adams-Bashfort scheme. Stability
of the numerical solution is ensured by selectively introduc-
ing numerical dissipation as described in Lamballais et al.
(2011). The no-slip condition is enforced through the im-
mersed boundary method as in Gautier et al. (2014).

The set-up used in this work is similar to that of Zhou
et al. (2019) with a geometry as illustrated in fig. 1. Uni-
form velocity U∞ is imposed at the inlet whereas the out-
let is treated with a convective boundary condition (using the
maximum velocity normal to the outlet for the convective ve-
locity). Periodicity is enforced at the cross-flow boundaries
which are 20d apart. The span-wise direction is πd wide and
is also treated as periodic. The global Reynolds number is
Re∞ =U∞d/ν = 5000, where ν is the kinematic viscosity. The
gap ratios g/d simulated are 1.25 and 2.4.

For both gap ratios considered, the above configuration
led to a resolution varying between 2η and 6η , typically of
O(3η), with η being the Kolmogorov length scale. The shed-
ding frequency, taken as that where the power spectral density
of u′2 (fluctuating velocity in the y direction) is maximal, for
the g/d = 1.25 and g/d = 2.4 were found to be 0.08U∞/d and
0.16U∞/d, respectively, leading to a sampling time of ca. 180
and 420 shedding cycles, respectively.

RESULTS
The Normalised Turbulent Dissipation

We start by investigating how the normalised turbulence
dissipation rate

Cε = ε
U 3

L
(4)

depends on the local Reynolds number

Reλ =
U λ

ν
(5)

with the Taylor micro-scale defined as λ =
√

15 ν

ε

U 2

3 .
The choice of velocity and length scales for eqs. (4)

and (5) follows that of Chen et al. (2021). Namely, the ve-
locity scale U is taken as ⟨

√
u′iu

′
i⟩ whereas the length scale

L is obtained by integrating the stream-wise autocorrelation
function of u′2 up to its first zero crossing.

In Chen et al. (2021), the turbulence dissipation, which is
involved in eq. (4) directly and in eq. (5) through λ , was com-
puted using the assumption of small-scale axisymmetry (see
George & Hussein, 1991). Our DNS suggests (not shown here
for brevity) that this assumption yields very good estimates of
ε , perhaps even slightly better than small-scale isotropy (for
the g/d = 2.4 case in particular) which also yields good dis-
sipation estimates. We also found that computing L from the
stream-wise autocorrelation function of u3 does not alter any
of our conclusions.

We find that both Cε and Reλ vary significantly along x
and y, for both gap ratios considered here. As seen in fig. 2,
the stream-wise evolution of Cε and Reλ is drastically different
between configurations: while Reλ increases with x for g/d =
1.25 it decreases for g/d = 2.4, conversely Cε decreases with
x for g/d = 1.25 and increases for g/d = 2.4. Looking at the
product Cε Reλ along x (fig. 3) reveals that the nonequilibrium
scaling Cε ∝ Re−1

λ
holds only for g/d = 2.4 as for g/d = 1.25

Cε decreases faster with x than the increase in Reλ .
The y extent in Chen & Vassilicos (2022) where Cε and

Reλ were measured was restricted to |y| < 0.5d. Here we ex-
amine these two quantities throughout the whole breadth of
the wake. Specifically, at a given x location, we consider all
y locations where the mean enstrophy is larger than 1/4 the
maximum mean enstrophy at that x location, as illustrated in
fig. 4.

In fig. 5 we plot Cε versus Reλ within the whole wake
for x > 10d; it can be clearly seen that these two quantities
are related through power laws of the type Cε ∝ Re−p

λ
. For

g/d = 1.25 we find p ≈ 1.3 from x = 10d onwards, whereas in
the g/d = 2.4 configuration p gradually increases from about
1.4 at x = 10d to about 1.5 at x = 20d. Figure 6 shows Cε

versus Reλ at x = 20d for both gap ratios.
Notice that while in fig. 5 the data is coloured by x loca-

tion, in fig. 6 it is coloured by the distance to the centreline
(y). Figure 6 highlights the robustness of the power-law, in
particular for the g/d = 2.4 case where Reλ first increases and
then decreases with increasing distance to the centreline, all
the while in close agreement with the fit Cε ∝ Re−p

λ
.

Interestingly, Chen & Vassilicos (2022) also observed
Cε ∝ Re−p

λ
with some scatter in the values of p and found

p ≈ 1.5 after removing the dominant POD modes in their data.
Our value of p≈ 1.3 for g/d = 1.25 is also remarkably close to
that found in the experiments of Chen & Vassilicos (2022) for
the same gap ratio at x = 7d (without the removal of dominant
POD modes).
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Figure 2: Cε (top) and Reλ (bottom) along x at y = 0 (full
lines) and y = g/2 (dashed lines) for g/d = 1.25 (blue)
and g/d = 2.4 (red).
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Figure 3: The product Cε Reλ along x (see caption of
fig. 2 for legend).

Second Order Structure Functions: Scaling
and Budget

Having established that Cε varies in space, following a
clear power law dependence on Reλ , we now turn our attention
to the second order structure functions of the streamwise and
cross-stream velocity components. These are shown in figs. 7
and 8 and it becomes immediately evident that the g/d = 1.25
case does not exhibit clear 2/3 power laws, whereas the g/d =
2.4 case does. In fact, with increasing downstream distance,
the plateau in the compensated structure functions becomes
evermore evident for g/d = 2.4 (even if narrower) whereas for
g/d = 1.25 there is an increasing departure from any plateau.

Apart from a potential contribution from mean flow
(whose significance should reduce with increasing X), it is
likely that coherent structures associated with vortex shedding
play an important role in figs. 7 and 8. Alves Portela et al.
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Figure 4: Contour map of log(E ), where E = ⟨ωiωi⟩ is
the mean enstrophy (and ωωω = ∇∇∇× uuu). The dotted line
indicates the y location at which E /max(E ) = 0.25 at
each streamwise position x. Top: g/d = 1.25; bottom:
g/d = 2.4.
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Figure 5: Cε versus Reλ for 10 < x/d < 25 and for y
within the dotted lines indicated in fig. 4; the points are
coloured by x from blue to red. The leftmost cluster
of points corresponds to g/d = 2.4 and the rightmost to
g/d = 1.25. The inset show the exponents p along x for
g/d = 1.25 (blue) and g/d = 2.4 (red).

(2017) showed how (but see also Thiesset et al., 2014) very
intense vortex shedding “contaminates” the scale-space distri-
bution of second order structure functions, potentially obfus-
cating any underlying power laws (this is particularly true at
moderate Reynolds numbers). Indeed, we found (not shown
for brevity) that the peak power spectral density (normalised
by total energy) of u′2 is ca. three orders of magnitude larger
for g/d = 1.25 than g/d = 2.4. Furthermore, the magnitude of
this peak decreases with increasing X/d significantly only for
g/d = 2.4.
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Figure 6: Cε versus Reλ at x = 20d, the full lines indicate
the fits 743Re−1.5

λ
(left) and 480Re−1.33

λ
. The leftmost

cluster of points corresponds to g/d = 2.4 and the right-
most to g/d = 1.25.
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Figure 7: The second order structure functions ⟨(δu)2⟩
and ⟨(δv)2⟩ normalised both in Kolmogorov variables
(dashed lines) and as in eq. (2) (full lines), for g/d =
1.25. The colours distinguish between the streamwise
locations X/d = 15 (red), X/d = 20 (green) and X/d =
25 (blue); lines of the same colour correspond to differ-
ent 0 < Y/d < 0.5.

Focusing on the g/d = 2.4 configuration, fig. 8 makes it
clear that the normalisation given by eq. (2) collapses more
successfully the structure functions at different locations (both
X and Y ) than Kolmogorov normalisation. We found that fur-
ther increasing the range of Y over which the curves are plotted
deteriorates the collapse. Larger values of Y , however, were
found to be associated with stronger mean-flow inhomogene-
ity, whereas the theory of Chen & Vassilicos (2022) actually
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Figure 8: As fig. 7 but for g/d = 2.4.

requires that the mean flow is homogeneous: otherwise the
non-linear terms in eq. (3) will feature production, which is un-
likely to satisfy the same inner/outer scalings as “pure” inter-
scale/space transfers.

Figures 9 and 10 shows the terms that feature in eq. (3),
except for the viscous diffusion term which is negligible for
rx ≳ λ (see Valente & Vassilicos, 2015). One can show that
inner similarity actually translates to ∝ σε1, which is why
we have plotted (versus rx/ℓi) all terms normalised by σε1 in
figs. 9 and 10.

Contrasting the budgets of ⟨(δu)2⟩ in figs. 9 and 10 re-
veals that Πu and Tp,u are qualitatively different between the
two configurations. In particular, while for g/d = 2.4 Tp,u
remains small at all rx, X and Y investigated here, it is actu-
ally one of the dominant terms in the g/d = 1.25 case, acting
as a source of ⟨(δu)2⟩. Conversely, in the g/d = 1.25 flow
Πu actually changes sign for some rx (∼ 75ℓi at X = 15,20d
and ∼ 200ℓi at X = 25d) whereas it remains negative at all rx
for g/d = 2.4. In both cases the spatial transport is compara-
ble to the remaining terms in the budget, acting as a source of
⟨(δu)2⟩ - actually the only source term for the g/d = 2.4.

While the change in sign of Πu could suggest a rever-
sal in direction of the non-linear cascade in the g/d = 1.25
flow, we have checked that δu1δu2

1 is monotonic and nega-
tive for all rx, X and Y considered. This means that in this
flow, contributions to Πu associated with at least one of the
terms ∂ ⟨δu2(δu1)

2⟩
∂ ry

and ∂ ⟨δu3(δu1)
2⟩

∂ rz
introduce sufficient expan-

sion in the cascade (see Vassilicos, 2015; Chen & Vassilicos,
2022, for an interpretation of the non-linear cascade in terms
of compression/expansion events), along directions normal to
rx, to overcome the compression occurring along rx.

Let us now restrict our attention to the g/d = 2.4 case,
where clear 2/3 power laws were observed in fig. 8. The
theory of Chen & Vassilicos (2022) predicts that these power

4



12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan (Online), July 19-22, 2022

0 100 200 300
−3

−2

−1

0

1

2

3

rx/`i

0 100 200 300
−2

−1

0

1

2

rx/`i

Figure 9: The various terms involved in eq. (3) nor-
malised by σε1 for g/d = 1.25. Top: minus the inter-
scale transfer −Πu (full line), pressure-velocity correla-
tion Tp,u (dotted line) and total spatial transport Au−Tu
(dash-dotted line); bottom: mean flow advection Au
(dashed line) and turbulent transport Tu (dotted line).
The colours distinguish between the streamwise loca-
tions X/d = 15 (red), X/d = 20 (green) and X/d = 25
(blue); lines of the same colour correspond to different
0 < y/d < 0.5.
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Figure 10: As fig. 9 but for g/d = 2.4.
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Figure 11: Minus the interscale transfer −Πv, normalised
by σε2. The colours distinguish between the stream-
wise locations X/d = 15 (red), X/d = 20 (green) and
X/d = 25 (blue); lines of the same colour correspond to
different 0 < y/d < 0.5.

laws are associated with self-similarity of the terms involved
in eq. (3) in terms of inner and outer scales, whereas the
matching between inner and outer budgets further implies that
Πu/σε1 = const. in the intermediate range of scales, assum-
ing of course that such an intermediate range exists and is wide
enough.

We do not observe a clear plateau in Πu/σε1, except
perhaps for X = 15d; as X increases (recall from fig. 2 that
the local Reynolds number decreases with increasing x), the
magnitude of Πu/σε1 actually decreases, retaining a peak at
rx ∼ λz, a Taylor micro-scale that uses only span-wise infor-
mation (which we found to better represent the scale above
which Du is negligible). Notice that the theory implies that
Au becomes negligible in the inner balance of ⟨(δu)2⟩ with
increasing Reynolds number. It is certainly not the case that
Au is negligible here, which may be a Reynolds number ef-
fect. However, we also find that the spatial regions with largest
Reλ (e.g. x/d < 15 but also y/d > 0.5d) correspond to regions
where mean flow inhomogeneity becomes significant, which
is not accounted for in the theory. As already mentioned, the
theory deals with inhomogeneity of the turbulence but not of
the mean flow.

It is worth noting that Πv/σε2 (shown in fig. 11 and cor-
responding to v ≡ u3) does also not display a clear plateau,
despite ⟨(δv)2⟩ displaying clear 2/3 power laws. However, in
contrast to Πu, we find that for rx/ℓi ≲ 100 the Πv/σε2 are all
independent of x which indicates that Πv is self-similar at the
inner scales.

CONCLUSION
In this work we have performed DNS of two turbulent

wakes generated by pairs of prisms in configurations similar
to the experiments of Chen et al. (2021). Our results allowed
us to confirm some of the assumptions made in their data anal-
ysis (owing to experimental limitations), such as small scale
axisymmetry.

We have put the observations of Chen et al. (2021) to the
test by exploring the flow along much broader regions in space.
Namely, we have found that power laws of the type Cε ∝ Re−p

λ

exist over practically the whole breadth of the mean wake and
that the exponent p is actually quite robust, showing only lit-
tle dependence on stream-wise location. The two configura-
tions analysed yield different exponent p, but they also dif-
fer drastically in terms of the streamwise evolution of Cε and
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Reλ : whereas a familiar non-equilibrium relation develops for
x/d ≳ 10 in the g/d = 2.4 case (where Reλ decreases with in-
creasing x), the smaller gap ratio (g/d = 1.25) actually leads
to Cε decreasing at a much faster rate with x than the increase
in Reλ .

We observed 2/3 power laws in ⟨(δu1)
2⟩ and ⟨(δu2)

2⟩,
the second order structure functions associated with the
streamwise and cross-stream velocity components, respec-
tively, for separations aligned with x only for the larger gap
ratio g/d = 2.4; we expect that the much stronger coherent
structures observed in the g/d = 1.25 case may be the source
of this difference. The terms involved in the energy budget of
these quantities are also qualitatively very different between
the two flows.

Concerning the different energy budgets of ⟨(δu1)
2⟩ be-

tween the two flows, in the smaller gap ratio case there is
an inversion in the sign of the non-linear inter-scale trans-
fer attributable to expansion events in the directions normal
to rx. Further investigation of this phenomenon will require
analysing the cascade along the ry and rz directions.

In an assessment of the inhomogeneous turbulence the-
ory of Chen & Vassilicos (2022) in the g/d = 2.4 case, we
find that mean flow advection is not negligible at small scales
owing to the moderate Reynolds numbers. In order to inves-
tigate regions of these flows with much larger local Reynolds
number it becomes necessary to either simulate higher global
Reynolds numbers, which is computationally very challeng-
ing, or extend the theory to account for inhomogeneity in the
mean flow given that the local Reynolds number is highest in
these regions.
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Lamballais, E., Fortuné, V. & Laizet, S. 2011 Straightforward
high-order numerical dissipation via the viscous term for
direct and large eddy simulation. Journal of Computational
Physics 230 (9), 3270–3275.

Ortiz-Tarin, J. L., Nidhan, S. & Sarkar, S. 2021 High-reynolds-
number wake of a slender body. Journal of Fluid Mechanics
918.

Thiesset, F. & Danaila, L. 2020 The illusion of a Kolmogorov
cascade. Journal of Fluid Mechanics 902.

Thiesset, F., Danaila, L. & Antonia, R. A. 2014 Dynamical
interactions between the coherent motion and small scales
in a cylinder wake. Journal of fluid mechanics 749, 201–
226.

Valente, P. C. & Vassilicos, J. C. 2015 The energy cas-
cade in grid-generated non-equilibrium decaying turbu-
lence. Physics of Fluids 27 (4), 045103.

Vassilicos, J. C. 2015 Dissipation in turbulent flows. Annual
Review of Fluid Mechanics 47, 95–114.

Zhou, Y., Nagata, K., Sakai, Y. & Watanabe, T. 2019 Extreme
events and non-kolmogorov −5/3 spectra in turbulent flows
behind two side-by-side square cylinders. Journal of Fluid
Mechanics 874, 677–698.

6


