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ABSTRACT
In this work the plane Couette flow is being investigated
for high Reynolds numbers Re → ∞ and small streamwise
wavenumbers α → 0 in the distinguished limit Reα = Reα =
O(1) using the temporal linear stability theory as well as the
resolvent analysis approach. The influence of Reα on both the
eigenfunctions obtained from the linear stability theory and the
repsonse modes obtained from the resolvent analysis is inves-
tigated, while both modes are being compared in order to anal-
yse the occurence of streamwise-elongated coherent structures
within the plane Couette flow.

INTRODUCTION
It is well known that for a high enough Reynolds number
Re the plane Couette flow becomes turbulent and thus both
small- and large-scale structures are observed. In order to in-
vestigate the large streamwise-elongated structures, which can
be observed in plane Couette flow, the linear analysis of the
Navier–Stokes equations in shear flows (Schmid & Henning-
son, 2001) provide useful insights. These linear analyses re-
veal that, for the plane Couette flow, the structures that are
most excitable are streamwise-constant. The observation of
streamwise-constant structures being most amplified has been
made for the laminar plane Couette flow among many others
by Gustavsson (1981) for example, as well as for its turbu-
lent counterpart for which the linear analyses are performed
about the turbulent mean flow in Hwang & Cossu (2010a). In
turbulent flows, coherent structures can be understood as be-
ing permanently forced via convective nonlinear interactions
of the fluctuations. Thus it seems appropriate to analyse the
flow behaviour as the response to a non-linear intrinsic forc-
ing through a linearised operator, which is the key idea of the
resolvent analysis, where all the non-linear fluctuation terms
in the Navier-Stokes equations for the perturbations are sum-
marised as an intrinsic forcing term f ′i = −u′j

∂u′i
∂x j

, through
which the Navier-Stokes equation can be rewritten in an input-
output system. A singular-value-decomposition (SVD) is be-
ing performed in order to rewrite the resolvent operator in the

most amplified response modes and their associated forcing
modes, which are coupled by the singular values. This work
aims to investigate the coherent structures through both the re-
solvent analysis and the linear stability theory with a laminar
base velocity profile for the limit of high Reynolds numbers
Re → ∞ and simultaneously small streamwise wavenumbers
α → 0 with the distinguished limit Reα = Reα = O(1).

GOVERNING EQUATIONS
The Navier-Stokes equations for the velocity fluctuations u′i
around a laminar base veloctiy profile in streamwise direction
x1, given by U1(x2) = x2 are given in wall-normal velocity-
vorticity formulation of the plane Couette flow for the wall-
normal velocity fluctuation u′2 and the wall-normal vorticity

fluctuation η ′
2 =

∂u′1
∂x3

− ∂u′3
∂x1

. Hereby spatial directions are rep-
resented by xi with i = 1,2,3. Solid wall boundary conditions
for the wall-normal velocity-vorticity formulation are Dirich-
let boundary conditions for u′2 and η ′

2 as well as the Neu-

mann boundary condition for u′2, i.e.
(

u′2,
∂u′2
∂x2

, η ′
2

)⊺
(x1,x2 =

±1,x3) = 0. A Fourier decomposition in streamwise and span-
wise direction as well as in time is applied using

u′i = ũ′i(x2)ei(αx1+βx3−ωt), (1)

η
′
2 = η̃

′
2(x2)ei(αx1+βx3−ωt), (2)

with α an β being the streamwise and spanwise wavenumber,
while ω represents the frequency of the fluctuations, which
leads to the governing equations as

−iω

(
(α2 +β

2)ũ′2 −
d2ũ′2
dx2

2

)
+ iαx2

(
(α2 +β

2)ũ′2 −
d2ũ′2
dx2

2

)

+
1

Re

(
d4ũ′2
dx4

2
−2(α2 +β

2)
dũ′2
dx2

2
+(α2 +β

2)2ũ′2

)

=−iα
d f̃ ′1
dx2

−β
2 f̃ ′2 − iβ

d f̃ ′3
dx2

, (3)
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−iωη̃
′
2 + x2iαη̃

′
2 + iβ ũ′2

+
1

Re

(
−

∂ 2η ′
2

∂x2
2

+(α2 +β
2)η̃ ′

2

)
= iβ f̃ ′1 − iα f̃ ′3 (4)

and

iα ũ′1 +
dũ′2
dx2

+ iβ ũ′3 = 0, (5)

with the Reynoldsnumber Re, where f̃i =
(
−u′j

∂u′i
∂x j

)
k

de-
notes the Fourier-transformed nonlinear forcing term corre-
sponding to the wavenumber vector k =

(
α, β , ω

)⊺. We are
presently particularly interested in large-scale coherent struc-
tures which are observed to occur for high Reynolds num-
ber flows and which admit very weak streamwise variation,
since these are structures found to be most amplified (Hwang
& Cossu (2010b)). Hence, we intend to analyse the distin-
guished asymptotic limit of α → 0 and Re → ∞, which are the
key parameters to observe coherent structures in the form of
counter rotating vortices occupying the whole channel width.
Thus we introduce Reα = Re ·α , which is to be considered of
order O(1), as done in Yalcin et al. (2021) for the temporal lin-
ear stability of the asymptotic suction boundary layer. We may
neglect all terms of order O(αn) with n > 1 in the equation (3)
and the equation (4), leading to

−i
ω

α
Reα

(
β

2ũ′2 −
d2ũ′2
dx2

2

)
+ iReα

(
x2β

2ũ′2 −
d2ũ′2
dx2

2

)

+
d4ũ′2
dx4

2
−2β

2 d2ũ′2
dx2

2
+β

4ũ′2

=
Reα

α

(
−iα

d f̃ ′1
dx2

−β
2 f̃ ′2 − iβ

d f̃ ′3
dx2

)
(6)

and

−i
ω

α
Reα η̃

′
2 + x2iReα η̃

′
2 +

Reα

α
iβ ũ′2 −

d2η̃ ′
2

dx2
2

+β
2
η̃
′
2 =

Reα

α
(iβ f̃ ′1 − iα f̃ ′3). (7)

RESOLVENT ANALYSIS
For the resolvent analysis it is necessary to rewrite the partial
differential equations (3) and (4) in an input-output system as

−iωMq̃′ = Lq̃′+Bf̃′, (8)

with q̃′ =

(
ũ′2
η̃ ′

2

)
and f̃′ =

 f̃ ′1
f̃ ′2
f̃ ′3

.

Hereby the mass-matrix M reads

M =

(
Reα

α

(
d2

dx2
2
−β 2

)
0

0 Reα

α

)
, (9)

with L, representing the Orr-Sommerfeld and Squire operator,
is given as

L =

(
L11 0
L21 L22

)
, (10)

with

L11 =−x2iReα

(
d2

dx2
2
−β

2

)
+

d4

dx4
2
−2β

2 d2

dx2
2
+β

4

L21 =−Reα

α
iβ

L22 =−x2iReα +
d2

dx2
2
−β

2 (11)

and the matrix B is given as

B =

(
−iReα

d
dx2

−Reα

α
β 2 −iβ Reα

α

d
dx2

Reα

α
iβ 0 −Reα

α
iα

)
. (12)

All velocity fluctuations ũ′i are generated from ũ′2 and η̃ ′
2 using

the continuity equation (5), since u′2 and η ′
2 are considered as

known quantities. The veloctiy fluctuations u′i are then given
by

ũ′1
ũ′2
ũ′3

= C
(

ũ′2
η̃ ′

2

)
=

1
β 2

iα d
dx2

−iβ
β 2 0

iβ d
dx2

iα

 . (13)

In a final step we may rewrite (8) by introducing the resolvent
matrix H as

q̃′ = Hf̃′B = (−L− iω1M)−1 f̃′B. (14)

Singular Value Decomposition
The goal of the resolvent analysis is to identify the dominant
directions along which f̃′B can be most amplified through the
resolvent operator H to form the corresponding responses in
q̃′. By using a singular value decomposition on the resolvent
operator H one can obtain these modes. The response modes
are considered to represent the occurring coherent structures,
observed in plane Couette flow, where only the knowledge of
the mean velocity profile has to be taken from external sources.
The singular value decomposition rewrites the matrix H into

H = USVT =

 | | |
Ψ1 Ψ2 ... Ψn
| | |


σ1

. . .
σn


− Φ1 −

...
− Φn −

 .

In this formulation S represents a diagonal matrix with the
singular values σn in decreasing order in its diagonal. The
matrix VT contains the forcing modes Φ⃗ j, while U contains
the respective response modes Ψ⃗ j. Both sets of singular vec-
tors are guaranteed to be orthonormal bases and are ranked
according to their singular values. In other words, the resol-
vent analysis interprets left and right singular vectors q̃′ and
f̃′B of q̃′ = Hf̃′B respectively as response and forcing modes,
with the magnitude-ranked singular values σi being the am-
plification (gain) for the corresponding forcing-response pair.
The resolvent operator is of lower rank if ∑

p
j=1 σ2

j ≈ ∑
∞
j=1 σ2

j ,
where σp ≫ σp+1 and the number of these singular values p
is small. If the resolvent operator is rank-1, hence σ1 ≫ σ2,
the response can be well predicted from the leading singular
vectors alone.
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Figure 1. Share of first 10 singular values of the resolvent
operator over all singular values for ω = 0, β = 2, Reα = 1,
α = 0.0001.

Numerical methods and discretisation
The input-output system (14) is being analysed numerically
using Matlab. The matrix system (14) is discretised in wall-
normal direction x2 using a Chebyshev-discretisation with
N = 251 collocation points, whereas the differentiation matri-
ces are being built using the chebdif function by Weideman &
Reddy (2000). The Dirichlet boundary and Neumann bound-
ary conditions for the wall-normal velocity u′2 and the Dirich-
let boundary condition for the wall-normal vorticity η ′

2 are im-
plemented using the cheb4c function by Weideman & Reddy
(2000). The resolvent operator is scaled to the kinetic energy
for wall-normal fluctuations as described in Schmid & Hen-
ningson (2001) as

Ev =
∫

α

∫
β

1
2k2

∫ 1

−1

(∣∣∣∣ ∂

∂x2
u′2

∣∣∣∣2 + k2|u′2|2 + |η ′
2|2
)

dydαdβ ,

(15)

with k = α2 +β 2.

Results
Figure 1 shows the share of the first 10 singular values over all
singular values for ω = 0, β = 2, Reα = 1 and α = 0.0001.
The share of each singular value decreases over-exponentially
with increasing modes. One can see that σ1 makes up to 82
% of all singular values, thus a low-rank behaviour can be as-
sumed, allowing the coherent structures to be well estimated
by only using the first response modes in the subsequent in-
vestigations. In Figure 2 the forcing modes are shown over the
wall-normal direction x2 on the left and the corresponding re-
sponse modes on the right side for ω = 0, β = 2, Reα = 1,
α = 0.0001 . It can be seen that the most energy can be
found in the streamwise fluctuation u′1 for the considered dis-
tinguished limit. The magnitude of the wall-normal and span-
wise fluctuations are of order O(α) compared to the stream-
wise fluctuation, thus the streamwise streaks can be observed.
Furthermore, we observe, that the energy within the forcing
is mainly given in the wall-normal and spanwise components,
while the energy of the response is stored in the streamwise
component. Spanwise and wall-normal forcing modes give
rise to streamwise response modes, indicating the lift-up ef-
fect being dominant.
The first response modes ũ′1, ũ′2, ũ′3 for ω = 0,β = 2,Reα =
1,α = 0.0001 are shown over the wall-normal direction x2 in
Figure 3. It once agains shows the most energy being stored in
the streamwise direction.
Figure 4 shows the response of the system as streamwise fluc-
tuations over the the spanwise and wall-normal direction for
a variation of α on the left side with a fixed Re and for var-
ious Re on the right side for a fixed α , where Reα on each

Figure 2. Forcing modes and Response modes for each ve-
locity fluctuation for ω = 0, β = 2, Reα = 1, α = 0.0001 are
shown over the wall-normal coordinate x2.

Figure 3. First response modes ũ′1, ũ′2, ũ′3 for ω = 0,β =

2,Reα = 1,α = 0.0001 are shown over the wall-normal direc-
tion x2. Solid lines represent the real part of the solution, with
dotted lines representing the imaginary part of the response
modes.

Figure 4. Streamwise fluctuations are shown over the span-
wise direction x3 and wall-normal direction x2 for (a) ω = 0,
β = 2, Reα = 1, α = 0.0001, (b) ω = 0, β = 2, Reα = 5,
α = 0.0005, (c) ω = 0, β = 2, Reα = 10, α = 0.001, (d) ω = 0,
β = 2, Reα = 1, Re = 10000, (e) ω = 0, β = 2, Reα = 5,
Re = 50000, (f) ω = 0, β = 2, Reα = 10, Re = 100000, as
pairs of vortices. Solid lines represent fluctuations with a posi-
tive sign, while dashed lines represent fluctuations with a neg-
ative sign.

row is equal on both the left and the right side. One can see
that an increase of Reα leads to a stronger inclination of the
streamwise structures within the spanwise and wall-normal di-
rection, while the effect of an increasing Re and an increasing
α is the same, which can be seen through the fact that the co-
herent structures in (a) and (d), (b) and (e), (c) and (f) are the
same. Thus Reα effects the inclination of these strucutures
rather than α or Re alone. The Orr-mechansim yields an in-
clination of the structures in the direction of the propagating
waves. Since for α ̸= 0, the waves are not propagating in the
streamwise direction alone anymore, an inclination within the
spanwise and wall-normal direction can be observed. The in-
fluence of β and Reα on σ1 and thus the energy of the system
for ω = 0 is now being investigated. For this purpose Figure
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Figure 5. The first singular value σ1 is shown over β for ω =

0 for a fixed α = 0.0001 and three different values for Re on
the left side and for a fixed Re = 10000 and three different
values for α on the right side.

5 shows the behaviour of σ1 over β for three different values
of Reα for a fixed α = 0.0001 and three different values of Re
on the left side and for a fixed Re = 10000 and three different
values for α on the right side. It can be seen that σ1 first in-
creases with β 1 for an increasing β before declining with β−2

after reaching its peak. On the left hand side Reα is increased
by setting α = 0.0001 and increasing Re. It can be seen that
σ1 increases with increasing Reα for a fixed α . On the right
side the Reynolds number was set to Re = 10000, while α is
being changed. Increasing Reα on this way, leads to a decreas-
ing first singular value, agreeing with the findings of Hwang &
Cossu (2010a) that streamwise-constant structures are being
most amplified.

LINEAR STABILITY THEORY
In this section we want to investigate the distinguished asymp-
totic limit with Reα = O(1) for the plane Couette flow using
the linear stability theory, where the Orr-Sommerfeld and the
Squire equation are obtained by setting the right-hand side of
(6) and (7) to 0 due to considering only small fluctuations.
Furthermore we observe that in these equations terms of the
order ω

α
prevail, and hence, a low frequency assumption is im-

plied with ω = ω1α +O(α2), leading to the expanded Orr-
Sommerfeld and Squire equation given as

−iω1Reα

(
β

2ũ′2 −
d2ũ′2
dx2

2

)
+ iReα x2β

2ũ′2

−iReα x2
d2ũ′2
dx2

2
+

d4ũ′2
dx4

2
−2β

2 d2ũ′2
dx2

2
+β

4ũ′2 = 0 (16)

and

−iω1Reα η̃
′
2 + x2iReα η̃

′
2 +

Reα

α
iβ ũ′2 −

d2η̃ ′
2

dx2
2

+β
2
η̃
′
2 = 0. (17)

The Orr-Sommerfeld equation (16) is only dependent on the
newly introduced variable Reα , whereas the Squire-equation
(17) still contains α . Thus the wall-normal velocity fluctua-
tion ũ′2 has to be of order O(α) compared to the wall-normal
vorticity fluctuation η̃ ′

2 in order for all the terms to be of the
same order.
Therefore, we rewrite the wall-normal velocity fluctuation as
ũ2 = α ũ2,α , where α is used to rescale ũ2. By this assump-
tion α formally vanishes in the Squire equation (17) as well,

leading to the further expanded Orr-Sommerfeld and Squire
operators

−iω1Reα

(
β

2ũ′2,α −
d2ũ′2,α

dx2
2

)
+ iReα x2β

2ũ′2,α

−iReα x2
d2ũ′2,α

dx2
2

+
d4ũ′2,α

dx4
2

−2β
2 d2ũ′2,α

dx2
2

+β
4ũ′2,α = 0 (18)

and

−iω1Reα η̃
′
2 + x2iReα η̃

′
2 +Reα iβ ũ′2,α −

d2η̃ ′
2

dx2
2

+β
2
η̃
′
2 = 0. (19)

The solution for ũ′2,α is obtained analytically from the Orr-
Sommerfeld equation (18) in terms of Airy-functions Ai(z)
and Bi(z) as

ũ′2,α = C1eβx2 +C2eβx2

∫ x2

−1
e−2βx2 dx2 (20)

+C3

(
eβx2

2β
E1(Reα ,β ,ω1,x2)−

e−βx2

2β
E2(Reα ,β ,ω1,x2)

)

+C4

(
eβx2

2β
E3(Reα ,β ,ω1,x2)−

e−βx2

2β
E4(Reα ,β ,ω1,x2)

)
,

with

E j(Reα ,β ,ω1,x2) =
∫ x2

−1
e(−1) jβx2

·Ai
(
(−i)1/3Re−2/3

α (Reα (ω1 − x2)+ iβ 2)
)

dx2, (21a)

with j = 1,2 and

El(Reα ,β ,ω1,x2) =
∫ x2

−1
e(−1)l βx2

·Bi
(
(−i)1/3Re−2/3

α (Reα (ω1 − x2)+ iβ 2)
)

dx2, (21b)

with l = 3,4. The eigenvalues ω1 are being solved from the
eigenvalue problem using the Orr-Sommerfeld equation (18)
based on a Matlab Chebyshev collocation code as done in
Schmid & Henningson (2001) with the boundary conditions(

u′2,
∂u′2
∂x2

)⊺
(x1,x2 =±1,x3) = 0, which may be written in ma-

trix form as

A(Reα ,β ,ω1) ·


C1
C2
C3
C4

=


A11 A12 A13 A14
A21 0 0 0
A31 A32 A33 A34
A41 A42 0 0

 ·


C1
C2
C3
C4

 .

(22)
Ai j represent the respective coefficients for the boundary con-

ditions
(

u′2,
∂u′2
∂x2

)⊺
(x1,x2 =±1,x3) = 0. For a non-trivial so-

lution the determinant of A has to vanish, yielding the disper-
sion relation

det(A(Reα ,β ,ω1)) = A14A33 −A13A34 = 0, (23)
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Figure 6. Most critical numerically obtained eigenvalue ω1,i
is plotted over β for Reα = [1,1.5] on the left side and plotted
over Reα for β = [1,2] on the right side.

from which the eigenvalues are obtained numerically. It is
noticeable that using the linear stability theory the problem
is only dependent of Reα instead of an additional α , which
was the case for the resolvent analysis. In Figure 6 the most
critical numerically obtained eigenvalue ω1,i is shown over β

for Reα = [1,1.5] on the left side and plotted over Reα for
β = [1,2] on the right side. It can be seen that the most critical
numerically obtained eigenvalue ω1,i over β follows a similar
qualitative behaviour as the first singular value σ1 shown in
Figure 5. For larger values of Reα the most critical numerical
eigenvalue ω1,i converges towards a value close to 0.
In order to solve for the coefficients Ci in (20), first the Dirich-
let and Neumann boundary condition for the lower wall at
x2 =−1 is being implemented, leading to

ũ′2,α (x2 =−1) = C1e−β = 0, (24)

∂ ũ′2,α
∂x2

(x2 =−1) = βC1e−β +C2eβ = 0, (25)

so that C1 = C2 = 0. The Dirchlet boundary condition for the
upper wall at x2 = 1 then leads to

C3 =
e−β E4(Reα ,β ,ω1,1)− eβ E3(Reα ,β ,ω1,1)
eβ E1(Reα ,β ,ω1,1)− e−β E2(Reα ,β ,ω1,1)

C4. (26)

In order to solve for the wall-normal vorticity η̄ ′
2 analytically,

the Squire equation (19) can be used, resulting in

η̃
′
2 = C5Ai(Z(x2))+C6Bi(Z(x2)) (27)

+
iAπβReα

(−iReα )1/3

[
Ai(Z(x2)) ·

∫ 1

−1
Bi(Z(x2)) ũ′2,α dx2

−Bi(Z(x2))
∫ 1

−1
Ai(Z(x2)) ũ′2,α dx2

]
,

with Z(x2) = (−i)1/3Re−2/3
α (Reα (ω1 − x2)+ iβ 2). First the

Dirichlet boundary condition for the lower wall at x2 =−1 for
η̃ ′

2 is being implemented, leading to

C5 =−Bi(Z(x2 =−1))
Ai(Z(x2 =−1))

C6 =−γC6. (28)

Figure 7. Analytically obtained eigenfunctions ũ′1, ũ′2,α , ũ′3,α
for β = 2,Reα = 1 and for the most critical eigenvalue ω1 =

−10.1588i are shown over the wall-normal direction x2. Solid
lines represent the real part of the solution, with dotted lines
representing the imaginary part of the eigenfunctions.

Finally the boundary condition for the upperwall at x2 = 1 for
η̃ ′

2 is being implemented, resulting in

C6 = (29)

−C4
iπβReα

(−iReα )1/3

[
κAi(Z(x2 = 1))

∫ 1

−1
Bi(Z(x2))ũ′2,α dx2

−κBi(Z(x2 = 1))
∫ 1

−1
Ai(Z(x2)) ũ′2,α dx2

]
,

with 1
κ
=−γBi(Z(x2 = 1))+Ai(Z(x2 = 1)). The streamwise

and spanwise fluctuations ũ′1, ũ
′
3 can be obtained using the con-

inuity equation (5), resulting in

ũ′1 =− i
β

η̃
′
2, (30a)

ũ′3 =
i
β

α ũ′2,α +
i
β

αη̃
′
2. (30b)

Inserting (20) in ũ′2 = α ũ2,α one can see that α acts as a mag-
nitude amplifier in the wall-normal fluctuation ũ′2, while its
qualitative behaviour is only dependent of Reα . From (27) it
can be seen that the wall-normal vorticity fluctuation is only
dependent of Reα in both its qualitative and quantitative be-
haviour. From (30a) one can see that the streamwise velocity
fluctuation ũ′1 is only dependent of the wall-normal vorticity
fluctuation η ′

2, thus also only dependent of Reα . Furthermore
one can see in (30b) that one could rewrite ũ′3 = α ũ′3,α , with
ũ′3,α = i

β
ũ′2,α + i

β
η̃ ′

2, thus α would also only acts as a mag-
nitude amplifier for ũ′3, while its qualitative behaviour is only
dependent of Reα .
Figure 7 shows the analytically obtained eigenfunctions for the
re-scaled wall-normal velocity fluctuation ũ2,α as solved for in
(20), where the wall-normal vorticity fluctuation η̃ ′

2 together
with (30) was used in order to obtain the streamwise velocity
fluctuation ũ′1 and the re-scaled spanwise velocity fluctuation
ũ′3,α for β = 1,Reα = 1 and the most critical eigenvalue being
found numerically using (23) found at ω1 = −10.1588i. In
Figure 8 the streamwise velocity fluctuation is shown over the
spanwise and wall-normal direction for (a) β = 2, Reα = 1,
ω1 =−10.1588i, (b) β = 2, Reα = 5, ω1 =−2.0508i and (c)
β = 2, Reα = 10, ω1 =−1.0522i as pairs of vortices. It can be
seen that an increasing value of Reα causes a stronger inclina-
tion of these vortices in the wall-normal and spanwise plane,
while the influence of Reα on the inclination is stronger then
for the resolvent modes shown in Figure 4.
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Figure 8. Streamwise fluctuations are shown over the span-
wise direction x3 and wall-normal direction x2 for (a) β = 2,
Reα = 1, ω1 =−10.1588i, (b) β = 2, Reα = 5, ω1 =−2.0508i
and (c) β = 2, Reα = 10, ω1 = −1.0522i as pairs of vortices.
Solid lines represent fluctuations with a positive sign, while
dashed lines represnent fluctuations with a negative sign.

CONCLUSION AND OUTLOOK
In this work the resolvent analysis was used in order to in-
vestigate the linear amplification mechanisms leading to co-
herent structures in laminar plane Couette flow with emphasis
on the distinguished asymptotic case with high Reynolds num-
bers Re → ∞ and small streamwise wavenumbers α → 0, with
Reα = Re ·α = O(1).
Through a SVD decomposition of the input-output system (14)
the most amplified structures and the energy of the system
were analysed with using the knowledge of the laminar base
velocity profile only. The influence of the streamwise and
spanwise wavenumbers α and β , as well as the Reynolds num-
ber Re on the first singular value σ1, which represents the en-
ergy of the system, were investigated. The influence of Reα

on the streamwise velocity fluctuation was investigated, where
it could be seen that an increase of Reα lead to stronger in-
clinations of the streamwise velocity fluctuation within the
wall-normal and spanwise plane due to the Orr-mechanism.
Additionally the applicability of the distinguished limit with
Reα = Re ·α = O(1) for the linear stability theory was exam-
ined, where the eigenvalues of the Orr-Sommerfeld equation
could be obtained only depending on Reα , while analytical ex-
pressions for the eigenfunctions could be obtained using both
the Orr-Sommerfeld and Squire equation. It could be seen that
α only acts as a magnitude amplifier for both the wall-normal

and the spanwise velocity fluctuation fluctuation ũ′2 and ũ′3,
while the wall-normal vorticity η̃ ′

2 and thus the streamwise
fluctuation ũ′1 are only dependent on Reα for the distinguished
limit with high Reynolds numbers Re → ∞ and small stream-
wise wavenumbers α → 0. Once again an increase of Reα

lead to inclined structures within the wall-normal and span-
wise plane. The eigenfunctions obtained from the linear stabil-
ity theory and the response modes from the resolvent analysis
were compared, where it could be seen that in both cases the
most energy can be found in the streamwise direction, whereas
the amplitudes of the velocity fluctuations in wall-normal and
spanwise direction are in the order of O(α) smaller compared
to the streamwise velocity fluctuations.
A first extension to this work is planned by also considering a
turbulent mean velocity profile obtained from DNS data. Ad-
ditionally the response of the resolvent system with frequen-
cies close to the eigenvalues can be investigated in order to
analyse possible pseudo-resonance phenomena. Furthermore
various modifications, such as the plane Couette flow with
wall-transpiration can be analysed in the future, where the in-
fluence of the wall-transpiration velocity on the stability of the
coherent structures could be a focus of the analysis.
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