
12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan (Online), July 19-22, 2022

SUBGRID-SCALE SURROGATE MODELING OF IDEALIZED
ATMOSPHERIC FLOWS: A DEEP LEARNED APPROACH USING

HIGH-RESOLUTION SIMULATION DATA

Muralikrishnan Gopalakrishnan Meena
National Center for Computational Sciences

Oak Ridge National Laboratory
Oak Ridge, TN, 37831-6008, USA

gopalakrishm@ornl.gov

Matthew R. Norman
National Center for Computational Sciences

Oak Ridge National Laboratory
Oak Ridge, TN, 37831-6008, USA

normanmr@ornl.gov

David M. Hall
NVIDIA

Lafayette, CO, USA
dhall@nvidia.com

ABSTRACT
We introduce a deep learned subgrid-scale surrogate

model for dry, stratified idealized atmospheric flows from
high-resolution simulation data. Deep neural networks (NNs)
are used to model the full state differences between a coarse
resolution simulation and a high-resolution simulation, run si-
multaneously with the coarse resolution simulation forced by
the high-resolution simulation, hence capturing both dissipa-
tive and anti-dissipative effects. The NN model is able to accu-
rately capture the state differences in a priori tests outside the
training regime. In a posteriori tests intended for production
use, the NN coupled coarse simulation is accurate compared
to the high-resolution simulation over a finite period in time.
With the accumulation of the errors, the NN-coupled simula-
tion becomes computationally unstable after a while. These
surrogate models further pave the way for formulating stable,
complex, physics-based NN models which are driven by tradi-
tional subgrid-scale turbulence closure models.

Introduction
The challenge for numerically analyzing atmospheric tur-

bulence is tied to the broad range of multi-scale physics con-
stituting such flows. More specifically, the added complexity
of density stratification involving cloud microphysics and tur-
bulence leads to greater challenges (Wyngaard, 1992). Captur-
ing the complex subgrid-scale processes at the scale of clouds
is important for constructing accurate global climate models
(Schneider et al., 2017). There have been various efforts in the
atmospheric science community to capture the effects of the
subgrid-scale processes using some form of parametrization.
Such parametrizations, like large-eddy simulations, rely on fil-
tering the high-wavenumber (subgrid-scale) structures and re-
solving only a coarser domain with embedded subgrid-scale
modeling (SGS modeling) (Pressel et al., 2017). The SGS
models parametrize the viscous dissipation from the filtered
subgrid-scale structures. Cloud resolving models (CRM) are
another example for such a modeling framework used in sim-
ulating global climate models (Randall, 2013; Hannah et al.,
2020). CRMs are comprised of a high-resolution cloud model
which parametrizes deep convection for the fluid state at that

location in the host model.

Such models are limited by the appropriate choice of the
parametrization. Moreover, simulating such models with the
global climate model at large climate time scales is still a
computational challenge, even with the current generation of
accelerator-based high-performance computing systems (Nor-
man et al., 2021). Recently, the use of artificial intelligence has
been at the forefront to form surrogate models parametrizing
the subgrid-scale processes (Duraisamy et al., 2019; Brunton
et al., 2020; Kochkov et al., 2021), taking advantage of the
availability of high-resolution simulation data. These models
generally rely on components in the eddy-viscosity term of the
filtered Navier-Stokes equation, which concentrate on captur-
ing the dissipative effects (Gamahara & Hattori, 2017; Rasp
et al., 2018; Maulik et al., 2019; Yuval & O’ Gorman, 2020).
Moreover, deep learning techniques have been used to cap-
ture and parametrize the subgrid-scale processes in global cli-
mate models (Krasnopolsky et al., 2013; Gentine et al., 2018;
Brenowitz & Bretherton, 2019).

As stratified turbulent flows encountered in cloud physics
also are comprised of significant anti-dissipative effects, it is
beneficial to capture both the dissipative and anti-dissipative
effects through the SGS closures. We approach this problem
by directly modeling the full state difference between a coarse
simulation and a simultaneously running very fine resolution
simulation, enabling us to capture both the dissipative and
anti-dissipative effects from the subgrid-scale processes. An
overview of the modeling framework is shown in Fig. 1. We
use the two-dimensional (2D) inviscid, non-hydrostatic, com-
pressible Euler equations with density stratification for solving
canonical LES and mesoscale atmospheric flows and to gen-
erate subgrid-scale data as the difference between high- and
low-resolution flow field data.

Instead of handling the problem on the global spatial do-
main all at once, we choose to handle it locally using stencils of
data (not unlike the nature of convolutions), to reduce the deep
learning model size, improve generalization, and increase the
number of samples available for training. To avoid chaotic di-
vergence between the two simulations, the states of coarse sim-

1

12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan (Online), July 19-22, 2022

ulation are updated by the states of fine simulation after each
time step. The dissipative and anti-dissipative components are
embedded into the coarse simulation as it is integrated with
the high-resolution simulation as a parallel driver. The current
modeling approach for 2D flows is useful as a pilot project to
develop the surrogate modeling techniques, particularly since
2D CRMs have been found to be accurate and computation-
ally cheaper parametrizations for global climate models. In-
corporating cloud microphysics to the present supervised ap-
proach could serve as a novel alternative to the SGS models of
CRMs, capturing both dissipative and anti-dissipative effects
of the subgrid-scale processes.

General procedure
We use NNs to augment the flow states of the coarse reso-

lution simulation, qcoarse, with states of a simultaneously run-
ning fine resolution simulation, qfine. The majority of subgrid-
scale effects missing from the coarse resolution simulation are
captured by the full state difference

∆q = qfine−qcoarse, (1)

where qfine denotes qfine interpolated to the coarse resolution
grid stencil by summing over the stencil around a given cell
in the fine grid to reduce the dimension to that of the coarse
grid. A sample portrayal of the procedure is shown in Fig. 1.
Given a coarse resolution data, the objective is to obtain a NN
learned state difference, ∆qNN, and correct the coarse states to
get

qNN = qcoarse +∆qNN. (2)

The procedure resembles a mapping from fine grid to coarse
grid. Modeling the full state difference enables us to capture
both the dissipative and anti-dissipative effects of the subgrid-
scale processes. In the following section, we will introduce the
flow problem we use to demonstrate the modeling technique.
We will discuss the details of the NN architecture and training
procedures in Sections and .

Fluid flow problem
We consider a 2D thermal collision of two hot and cold

thermals as a sample problem to demonstrate the modeling
framework (Norman, 2021). The colliding thermals create
strong discontinuities, strong winds, and significant turbulent
regimes as the flow evolves in time. The flow evolution is de-
scribed by the 2D, dry, compressible, non-hydrostatic Euler
equations, given by

∂

∂ t

ρ

ρu
ρw
ρθ

+
∂

∂x

ρu

ρu2 + p
ρuw
ρuθ

+
∂

∂ z

ρw
ρuw

ρw2 + p− pH
ρwθ

=

0
0

−(ρ−ρH)g
0

(3)

ρH =−1
g

∂ pH

∂ z
(4)

where ρ is density, u and w are wind velocities in x- and
z-directions (horizontal and vertical directions, respectively),
θ is potential temperature, p = C0 (ρθ)γ is pressure (C0 is
a constant, γ = cp/cv, cp is specific heat of dry air at con-
stant pressure, and cv is specific heat of dry air at constant
volume), pH and ρH are the hydrostatic pressure and density,
and g is acceleration due to gravity. Equation 3 can be repre-
sented in vector form as ∂tq+∂xf+∂zg = s with the state vec-
tor q = [ρ ρu ρw ρθ]T . We only model the perturbed

scalars, ρ ′ and (ρθ)′), removing the dominant underlying hy-
drostatic balance described by Eq. (4). Although inviscid, the
Euler equations form the basis of atmospheric flow simula-
tions, and inherent numerical dissipation maintains stability.
Moreover, the 2D setting is an apt choice for idealized simu-
lation as the majority of idealized test cases in literature are
2D.

The flow is perturbed from a neutrally stratified dry at-
mosphere. The domain is of size (x,z) ∈ [0,20]× [0,10] km.
Slip, solid wall boundary conditions are prescribed to the top
and bottom walls. The left and right walls are prescribed with
periodic boundary conditions. The time steps are adjusted so
that the Courant–Friedrichs–Lewy number is 0.8. We choose
the grid resolution, nx × nz, of the coarse simulation to be
200× 100 (grid spacing of 100 m in all directions). The fine
resolution domain has a resolution of 1000× 500 (grid spac-
ing of 20 m in all directions), resulting in a grid mapping ratio
of 5× between the coarse and fine domains. We simulate the
flows till 1000 secs. After the initial laminar regime domi-
nated with anti-dissipative effects, the flow evolves to a highly
turbulent regime from about 500 secs onward. The tempo-
ral regimes consisting of both anti-dissipative and dissipative
effects makes the colliding thermal test case a useful model
problem to test the capability of the current framework to cap-
ture these effects. Further details of the test case, solver, and
numerical schemes can be found in Norman (2021).

Neural network setup
We deploy a supervised deep learning technique to model

the relation between the inputs, a local stencil of coarse reso-
lution states (qcoarse), and the outputs, state difference in the
center cell of the stencil with the fine resolution states (∆q).
We model this mapping between qcoarse and ∆q using deep
NNs of the form N (qcoarse,w) with w representing the pa-
rameters (“weights”) of the NN. The learning process involves
optimizing the parameters w of the NN by minimizing the loss
computed by the function L[∆q,N (qcoarse,w)]. In the cur-
rent analysis, we use a squared L2 norm as the loss function,
L[∆q,N (qcoarse,w)] = ‖∆q−N (qcoarse,w)‖2

2.
A stencil-based approach is used to build the architecture

of N (qcoarse,w). We use the stencil around each grid cell
in the coarse simulation to model the ∆q at the respective lo-
cations as shown in Fig. 2. The framework of N (qcoarse,w)
is composed of 36 inputs, the 4 flow states of the 3× 3 grid
stencil around a given coarse cell. The outputs (4 values) are
the ∆q at the given grid cell (the center of the stencil of in-
puts). The hidden layer(s) of the NN are comprised of neu-
rons of various configurations, enabling the nonlinear activa-
tion function to capture the relation between the inputs and
outputs (Goodfellow et al., 2016). We choose 3 different types
of NN architectures for the hidden layer(s) with a Leaky ReLU
activation function having a slope of 0.1 (Glorot et al., 2011):
(a) a single layer of 45 neurons (single-layer model), (b) 10
layers with 45 neurons/layer in a ResNet-based configuration
(ResNet model) (He et al., 2016), and (c) 10 layers with 45
neurons/layer in a DenseNet-based configuration (DenseNet
model) (Huang et al., 2017). We tune various hyperparameters
of the NN architecture to arrive at these architectures. These
hyperparameters for the current approach involve the number
of neurons per layer, number of layers, activation function, val-
ues for regularization at the input, hidden, and output layers,
optimization routine, and batch size of training samples.

The single-layer model is used as a shallow, simple NN
model to test the capability of NNs to capture the grid map-
ping. Drop-out regularization is applied to the input layer to
stabilize the single-layer model. Adding more layers to this

2

12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan (Online), July 19-22, 2022

Machine
learned
correction

Coarse
resolution

flow

Corrected
high

resolution
flow

ML
Model

Figure 1. An overview of the NN-based approach to capture the subgrid-scale effects missing in a coarse resolution simulation.

Input Layer NN model Output Layer

outputsMLP

ResNet

DenseNet

inputs

Figure 2. Illustration of the network model for modeling the
full state difference using stencil data.

model reduced the stability of the model during testing with-
out considerable increase in accuracy and ability to capture
the nonlinear physics. This lead us to the last two models. The
last two models are deep NNs, used to increase the complex-
ity of the network and accurately capture the highly non-linear
physics. These deep NNs take advantage of the so-called skip-
connections to enable sparse, complex, non-linear relations be-
tween the input and output (He et al., 2016).

We have found that the simple, small framework of using
a stencil-based input and output to the network is advantageous
over convolutional neural networks for higher accuracy and
better stability of the model during testing in unknown data
regions. The architecture intrinsically is similar to convolution
operations. Moreover, the stencil-based approach mimics a
higher-order finite difference scheme. The current formulation
does not assume a dissipation- or advection-based mapping for
the relationship between qcoarse and ∆q. Our approach is to let
the NN capture the complex mathematical relations between
the states of the center cell and neighboring cells with the state
difference at the center cell in the coarse domain.

It is important to note that the actual domain of constraint
for the fine-scale model is wider than the 3×3 coarse cells over
the temporal domain of a coarse-grid time step. Therefore, full
constraint of the state difference is likely not possible. Still, we
wished to maintain a simpler NN model with minimal inputs,
and results will show that the 3× 3 stencil is effective in pro-
viding a constraining set of inputs.

Training and validation of model
We have learned that sampling the data for training is a

crucial step for building an accurate and stable NN model,
which we elaborate here. The training dataset is comprised of
1M samples collected between the temporal regime of [0,900]
secs (both laminar and turbulent regimes). The small size
of the stencil-based framework allows us to use significantly
fewer samples for training. We have found that the accuracy
of the model is significantly deteriorated when trained with

data randomly sampled in space and time, particularly in re-
gions with high gradients of the states. Thus, we use a to-
tal variation (TV) weighted random sampling technique. The
TV of a sample at the cell (i, j) in the 2D domain is given
by V (qi, j) = ∑

0
k=−1{|qi+(2k+1), j−qi, j|+ |qi, j+(2k+1)−qi, j|}.

TV identifies regions with high variations in states. As the
majority of the domain is comprised of quiescent regions with
small changes in the states during the initial transient regime,
these regions are not captured by the TV weighting. This lim-
itation makes the models biased against the background mean.
To alleviate this bias issue, we use a 50 : 50 split to curate sam-
ples with and without high TV weighting. Selecting the thresh-
old to identify the 50 : 50 split poses further challenges as the
flow evolves through both laminar and turbulent regimes, lead-
ing to a broad range of values for the states over time. Thus,
the threshold for identifying the 50 : 50 split is manually ad-
justed for various flow regimes.

The input and output data for the NN is scaled according
to min-max normalization. For a vector of input and output
variables of the network, Q = [q ∆q]T , the normalization
is given by Q̃ = (Q−mintrain Q)/(maxtrain Q−mintrain Q),
where Q̃ is the rescaled vector and the operators mintrain and
maxtrain refers to the minimum and maximum operators over
the training sample space of the variables, respectively.

We train the model in Python environment using PyTorch
and then deploy the model in the C++ solver with GPU ac-
celeration for production usage. The “NAdam” optimizer is
used for optimizing the weights of the NNs (Dozat, 2016).
For training the 1M data points (with a 70 : 30 split between
training and validation loops, and random shuffling of training
samples), we use mini-batches of 1024 samples. Even with
the use of mini-batches, the model incurs high variance in ac-
curacy over the training epochs. We have learned that using
a higher learning rate at initial training epochs till saturation
of the model accuracy and then lowering the value helps to
reduce this high variance in accuracy. Furthermore, for the
deep NNs, we also rely on an averaging technique to ensemble
the model weights across various training epochs to alleviate
the high variance in the training accuracy. After a regime of
stable accuracy is reached over epochs, we collect ensembles
of model weights from models with error below a particular
threshold. The weights of the final model are an ensemble of
these collected weights. The procedure helps average the gra-
dient basin in the optimization manifold, aiding to form a sta-
ble solution. This procedure has similarities with the stochas-
tic weighted averaging (SWA) method introduced in Izmailov
et al. (2018).

Results
For an effective model predicting the subgrid-scale ef-

fects, the model should be accurate as well as computation-
ally stable when tested in temporal regimes outside the training
regime. As with subgrid-scale turbulence models, we perform
both a priori and a posteriori testing (Piomelli et al., 1988) of

3

12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan (Online), July 19-22, 2022

the NN model in turbulent regimes outside the training regime.
The results reveal that the ResNet-based model gives the
most accurate and computationally stable NN-coupled solver.
Herein, we only show the results of the ResNet-based model,
while we also discuss insights gained from the other models.

A priori testing For the a priori testing, the results from
the NN model is directly compared with the expected solution,
evaluated independently without coupling the NN model with
the numerical solver. We observe the behavior of the model by
using data from a full snapshot in a turbulent regime outside
the training regime, as shown in Fig. 3 for θ ′. The ResNet
model predicts the state difference accurately with an overall
Euclidean error norm of L2 = ‖∆q−∆qNN‖2/‖∆q‖2 = 0.195.
We also plot the L1 error, ε = |∆q− ∆qNN|/max(|∆q|), to
study the results locally in space, as shown in Fig. 3 (c). The
main structures are accurately captured whereas the smaller-
scale features have lower accuracy. Nonetheless, the maxi-
mum error is 10%, which is isolated to a small region in the
lower-left side of the domain. The DenseNet model performed
close to that by the ResNet model for both the random sam-
ples (normalized errors have a mean and standard deviation
of O(10−3) and O(10−2), respectively) and full flow field
(L2 = 0.243) test datasets. Surprisingly, the single-layer model
did give accurate results (normalized errors have a mean and
standard deviation of O(10−2) and O(10−2), respectively, and
L2 = 0.629) but did not perform as well as the ResNet model.

A posteriori testing The a posteriori testing is done by
implementing the NN model with the flow simulation. A sam-
ple depiction of the NN-coupled solver is shown in Fig. 4. The
fine simulation is used as correction until the testing time, t0,
after which the NN model is invoked. Therefore, at time t0,
the model state is essentially perfect with respect to the fine-
grid model. We use the PyTorch C++ frontend API1 to couple
the NN model with the C++ solver, performing the so-called
in-the-loop ML integration with the scientific solver. A GPU
kernel is used to update the qcoarse with the machine learned
∆qNN after every time step, following Eq. 2. Even without spe-
cial batching consideration of online inferencing and refactor-
ing the code for GPU performance, we attain speed-ups up to
8×when using the NN-coupled solver compared to a fine reso-
lution simulation. Since the current discussion is concentrated
more towards the scientific aspects of the model, we reserve
the full computational aspects of the framework for future in-
vestigation.

We invoke the NN model at time t0 = 900 secs, which
is outside the training regime and well within the turbulent
regime. Recall that the training data was sampled from t ∈
[0,900] seconds. The results we show here are those after the
simulation has run for t0 + 5 secs, which is approximately 25
coarse-grid time steps after t0. The results for θ ′ of the coarse
simulation with correction using fine simulation, without cor-
rection (after t0), and with correction using the NN model are
shown in Figs. 5 (a-c), respectively. Without correction after t0
(Fig. 5 (b)), diffusive effects start to dominate the coarse sim-
ulation and the subgrid-scale effects are not captured. The NN
model accurately predicts the flow evolution with the sharp
gradients, maintaining a difference of L2 = 0.118 and maxi-
mum L1 difference of 20%, as shown in Figs. 5 (c-d), respec-
tively. Note that, the chaotic divergence of the modeled flow
and its difference from the ideal states are convolved insepara-

1https://pytorch.org/cppdocs/. A sample implementation of the
API is provided in https://github.com/muralikrishnangm/pytorch-cpp-
example.

bly in the results of the L1 and L2 difference norms. The main
coherent structures are accurately captured and the larger L1
errors are from the small-scale fluctuations, isolated to a few
regions in the flow field. Note that these regions of high lo-
cal errors are located at high-gradient regions. Note that we
also test the models in the initial laminar regime where anti-
dissipative effects dominate, which are not discussed here. We
have found the models effectively capture high-gradient re-
gions encountered in the laminar flow regimes as compared
to the coarse simulations.

With spatial accuracy comes the next challenge of tem-
poral stability of the NN-coupled solver. The high spatial ac-
curacy attained by the NN does not remain numerically sta-
ble indefinitely. As the flow evolves, the simulation becomes
unstable. The normalized error of the rms value of wind
speeds and total kinetic energy (KE) over time are shown in
Fig. 6. The rms value (spatial) of wind speeds and the total ki-
netic energy are defined by urms = [1/(nxnz)∑

nx,nz
i, j u2

i, j]
0.5 and

Total KE = 0.5[∑nx,nz
i, j (ρu)2

i, j +(ρw)2
i, j], respectively, where

u = [ρu ρw]T . Overestimates of variability, as seen previ-
ously in Fig. 5 (d), accumulate over time until the solver be-
comes unstable at t0 +17 secs, which is after ∼ 85 coarse-grid
time steps. The error in (ρu)rms by the coarse simulation with
correction using the NN model is always lesser than that of the
coarse simulation without correction while in the stable regime
(see Fig. 6 (a) solid and dashed blue lines, respectively). The
error in (ρw)rms by NN model is comparable to that of the
coarse simulation without correction. The total KE shows that
the NN-based correction indeed outperforms the coarse sim-
ulation without correction during most of the stable temporal
regime.

The results suggests that the NN-based correction is
highly accurate over a finite time interval, whereas further re-
search needs to be done to make the solver stable from the
accumulation of the errors at high-gradient regions. Note the
“spike” at the far right of Fig. 6. After this time, the model
becomes unstable. We note that the DenseNet model is able to
perform similarly to that by the ResNet model, becoming un-
stable after t0 +12 secs but with higher levels of error before it
becomes unstable. Whereas, the single-layer model is highly
unstable, as it becomes unstable after only t0 + 3 secs. This
inability of the single-layer model emphasizes the need for a
complex formulation of the NN model with multiple layers
and skip-connections. We provide insights from our ongoing
work on improving the stability of the NN-coupled solver in
the Conclusion section.

Concluding remarks and future work
We use deep learning to generate surrogate models from

high-resolution data for capturing subgrid-scale effects in dry,
stratified turbulence in idealized atmospheric flows. Starting
from the inviscid Euler equations with density stratification,
we generate subgrid-scale data as a difference between high-
and low-resolution flow field data. The coarse resolution sim-
ulation is kept in sync with the fine resolution simulation via
coarsening interpolation after each time step to avoid chaotic
non-linear divergence. The results show that a deep ResNet
type model using the stencil information around a given grid
cell is able to accurately perform a posteriori tests and is sta-
ble over a significant time period. Such accuracy is consis-
tent over both laminar as well as turbulent regimes, which are
dominated by anti-dissipative and disspative effects, respec-
tively. The present supervised approach serves as a novel al-
ternative to the subgrid-scale models in large eddy simulations
and CRMs, capturing both dissipative and anti-dissipative ef-
fects from the subgrid-scale phenomena.

4

12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan (Online), July 19-22, 2022

(a) (b)

(c)

Figure 3. Full flow field prediction by the neural network model. Potential temperature corrections are shown along with the L1 error
norm, ε = |∆q−∆qNN|/max(|∆q|) and L2 norm of the full flow field, L2 = ‖∆q−∆qNN‖2/‖∆q‖2.

Coarse simulation

Coarse simulation
with correction

Fine simulation NN modelCorrection method after
each time step

Figure 4. Sample depiction of a posteriori testing using the
neural network model.

We are currently investigating alternate formulations to
enhance the stability of the model. Complex diffusion-based
approaches inspired from traditional SGS models are an alter-
native approach in the physics-informed realm. Such models
along with enforcing conservation of various conserved quan-
tities can help stabilize the NN coupled solver (Ling et al.,
2016). Moreover, recurrent neural networks and generative
adversarial networks can be used for correcting the emulation.
One aspect we have not explored in this manuscript is the ex-
plainability and interpretability of the NN models. Recently,
various techniques have been used to understand the physical
implications of machine learning, particularly in the meteoro-
logical domains (McGovern et al., 2019). Finally, performant
and scalable integration of the model to the solver in hybrid ar-
chitectures (Partee et al., 2021) is of utmost urgency for prac-
tical production use of such models in climate models.

Acknowledgments This research was supported by the
Exascale Computing Project (17-SC-20-SC), a collaborative
effort of the U.S. Department of Energy Office of Science and
the National Nuclear Security Administration. This research
used resources of the Oak Ridge Leadership Computing Facil-
ity at the Oak Ridge National Laboratory, which is supported
by the Office of Science of the U.S. Department of Energy un-
der Contract No. DE-AC05-00OR22725.

REFERENCES
Brenowitz, N. D. & Bretherton, C. S. 2019 Spatially extended

tests of a neural network parametrization trained by coarse-
graining. J. Adv. Modeling Earth Sys. 11 (8), 2728–2744.

Brunton, S. L. et al. 2020 Machine learning for fluid mechan-
ics. Ann. Rev. Fluid Mechanics 52, 477–508.

Dozat, T. 2016 Incorporating Nesterov momentum into Adam.
Duraisamy, K. et al. 2019 Turbulence modeling in the age of

data. Ann. Rev. Fluid Mechanics 51, 357–377.
Gamahara, M. & Hattori, Y. 2017 Searching for turbulence

models by artificial neural network. Phy. Rev. Fluids 2 (5),
054604.

Gentine, P. et al. 2018 Could machine learning break the con-
vection parameterization deadlock? Geophysical Research
Letters 45 (11), 5742–5751.

Glorot, X. et al. 2011 Deep sparse rectifier neural networks.
Goodfellow, I. et al. 2016 Deep learning. MIT press.
Hannah, W. M. et al. 2020 Initial results from the super-

parameterized E3SM. J. Adv. Modeling Earth Sys. 12 (1).
He, K. et al. 2016 Deep residual learning for image recogni-

tion.
Huang, G. et al. 2017 Densely connected convolutional net-

works.
Izmailov, P. et al. 2018 Averaging weights leads to wider op-

tima and better generalization.
Kochkov, D. et al. 2021 Machine learning–accelerated com-

putational fluid dynamics. Proc. National Academy of Sci-
ences 118 (21).

Krasnopolsky, V. M. et al. 2013 Using ensemble of neural net-
works to learn stochastic convection parameterizations for
climate and numerical weather prediction models from data
simulated by a cloud resolving model. Adv. Artificial Neural
Systems 2013.

Ling, J. et al. 2016 Reynolds averaged turbulence modelling
using deep neural networks with embedded invariance. J.
Fluid Mechanics 807, 155–166.

Maulik, R. et al. 2019 Subgrid modelling for two-dimensional
turbulence using neural networks. J. Fluid Mechanics 858,

5

12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan (Online), July 19-22, 2022

(b)(a)

(c) (d)

Figure 5. Full flow state prediction using neural network based emulation in turbulent regime outside of training regime. Snapshots
of potential temperature perturbation (θ ′) after 5 secs from the initial state of testing regime are shown for: (a) coarse simulation with
correction using fine simulation (θ ′fine), (b) coarse simulation without correction (θ ′coarse-no correction), and (c) coarse simulation with
correction using NN model (θ ′coarse-NN), along with the L2 = ‖qfine−qcoarse-NN‖2/‖qfine‖2 difference norm of the flow field. (d) L1
difference of θ ′coarse-NN with respect to θ ′fine, ε = |qfine−qcoarse-NN|/max(|qfine|).

(b)(a)

ResNet from
No correction from

ResNet from
No correction from
Total Kinetic Energy

Figure 6. Comparison of L1 errors in the (a) rms values of flow velocity and (b) total kinetic energy over time. The dashed lines
are the variables from the coarse simulation without correction and the solid lines are those of the coarse simulation with correction
using NN model. The L1 error norm for the time series data is defined by ε = |fcoarse-no correction/coarse-NN− ffine|/|ffine|, where f =
[urms Total KE]T .

122–144.
McGovern, A. et al. 2019 Making the black box more trans-

parent: Understanding the physical implications of machine
learning. Bulletin of the American Meteorological Society
100 (11), 2175–2199.

Norman, M. R. 2021 A high-order WENO-limited finite-
volume algorithm for atmospheric flow using the ADER-
differential transform time discretization. Quarterly J.
Royal Meteorological Society 147 (736), 1661–1690.

Norman, M. R. et al. 2021 Unprecedented cloud resolution in
a GPU-enabled full-physics atmospheric climate simulation
on OLCFs summit supercomputer. Int. J. HPC Applications
36(1), 93–105.

Partee, S. et al. 2021 Using machine learning at scale in HPC
simulations with SmartSim: An application to ocean cli-
mate modeling.

Piomelli, U. et al. 1988 Model consistency in large eddy sim-

ulation of turbulent channel flows. Physics of Fluids 31 (7),
1884–1891.

Pressel, K. G. et al. 2017 Numerics and subgrid-scale mod-
eling in large eddy simulations of stratocumulus clouds. J.
Adv. Modeling Earth Sys. 9 (2), 1342–1365.

Randall, D. 2013 Beyond deadlock. Geophysical Research
Letters 40 (22), 5970–5976.

Rasp, S. et al. 2018 Deep learning to represent subgrid pro-
cesses in climate models. Proc. National Academy of Sci-
ences 115 (39), 9684–9689.

Schneider, Tapio et al. 2017 Climate goals and computing the
future of clouds. Nature Climate Change 7 (1), 3–5.

Wyngaard, J. C 1992 Atmospheric turbulence. Ann. Rev. Fluid
Mechanics 24 (1), 205–234.

Yuval, J. & O’ Gorman, P. A. 2020 Stable machine-learning
parameterization of subgrid processes for climate modeling
at a range of resolutions. Nature Comm. 11 (1), 1–10.

6

