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ABSTRACT
The use of physics-informed neural networks (PINNs),

which incorporate governing laws to constrain the training of
machine-learning algorithms, has opened the door to novel ap-
plications of artificial intelligence (AI) to model and regular-
ize experimental data. PINNs have been recently shown to
improve the accuracy of time-resolved measurements, but its
capabilities are significantly reduced when that resolution is
not at hand. In this work, we exploit PINNs to enhance veloc-
ity measurements from non-time-resolved field measurements,
as those available for example in snapshot Particle Image Ve-
locimetry (PIV). We propose using PINNs as a regularizer
of time-resolved estimated fields from simultaneous measure-
ments with fast pointwise probes and non-time-resolved PIV.
We use a multilayer perceptron (MLP) architecture to establish
a correspondence between probe data and the temporal coeffi-
cients of the Proper Orthogonal Decomposition of the velocity
profiles. The estimated fields are then fed to the PINNs to en-
hance the data and increase precision, additionally extracting
derived quantities not available in the raw data, such as the
pressure distribution.

INTRODUCTION
Machine-learning (ML) algorithms are recently being em-

bedded in an ever-growing amount of applications due to both
the increase in the computational capacity as well as the speed
at which results can be obtained. Among others applications,
ML has demonstrated being a powerful ally to recover, correct,
regularize or enhance (among other capabilities) experimen-
tal data that otherwise would not be accessible due to setup
or hardware limitations. Physics-informed neural networks
(PINNs) (Raissi et al. (2019)) are an example of function ap-
proximator based on a neural network architecture trained by
directly enforcing physical constraints. In their original imple-
mentation, PINNs were based on fully-connected layers which
incorporate governing laws as loss function and therefore are
able to impose physics constraints while reconstructing field
variables from incomplete or limited measurements or data
(Mao et al. (2020); Cai et al. (2021); Yang et al. (2021)).

In the field of fluid mechanics, PINNs have been proven
to provide promising results regarding fluid flow estimation
(Raissi et al. (2020)) using scalar field data. For this case in
particular, the normalized field variables, namely the compo-
nents of the velocity vector in 3D (u,v,w) and the pressure p,
follow the well-known Navier-Stokes (NS) equations, which
can be written in a simplified manner as follows:
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where t,x,y,z refer to time and Cartesian coordinates, and
Re = UL/ν is Reynolds number based on a characteristic ve-
locity U , length L and kinematic viscosity ν . This set of equa-
tions is enforced as a constraint to reconstruct and regularize
fluid velocity fields.

PINNs have been recently used to obtain dense veloc-
ity fields from Lagrangian Particle Tracking measurements
(Han et al. (2021); Wang et al. (2022)). The implementa-
tion of PINNs for data assimilation using sparse particle tracks
requires time-resolved data to accurately compute the time
derivatives in equation 1. This is often difficult to achieve due
to hardware limitations, and when feasible it requires in most
cases expensive equipment. This limits the use of PINNs for
non-time-resolved Particle Image Velocimetry (PIV), often re-
ferred as ‘snapshot PIV’.

To overcome the lack of time resolution, several studies
have aimed at predicting flow fields via multi-time delay lin-
ear estimators (and more recently non-linear mapping based
on neural networks) using pointwise probes, for which time
resolution is more accessible, in combination with snapshot
PIV. While this approach comes at the expense of increased
complexity of the setup, it has demonstrated being an interest-
ing solution to obtain time-resolved flow field measurements.
Estimators based on Linear Stochastic Estimation (see for in-
stance Tinney et al. (2008) for jet flows), Extended Proper Or-
thogonal Decomposition (Borée, 2003) and more recently re-
current neural networks (Deng et al., 2019; Jin et al., 2020)
have been proven effective to obtain good estimations of the
most energetic flow features. On the downside, flow field fea-
tures exhibiting low level of correlation with the probe data
were reconstructed with higher error. Furthermore, in most
cases data were mapped onto a lower rank space to improve
the identification of correlated features, thus inevitably intro-
ducing truncation error into the reconstructed fields.

In this work, we present a novel architecture including
PINNs as a regularizer for time-resolved flow fields estimated
from fast pointwise probes. This approach features several
benefits. First, we enable the use of PINNs for non-time-
resolved data by introducing time-resolution through the com-
bination of PIV with probes. Second, PINNs are expected to
improve the accuracy of the reconstructed fields by imposing
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physical constraints. Third, with adequate boundary condi-
tions PINNs can augment the data by providing access to ad-
ditional quantities, such as the pressure field.

In the Methodology section, the flow chart of the algo-
rithm is detailed. In the Validation and Results section, the
test case is described and the main results are outlined, respec-
tively. Finally, the conclusions are drawn.

METHODOLOGY
The proposed algorithm is sketched in figure 1. We as-

sume snapshot PIV data are available on a regular grid. In the
sketch the input data are shown for simplicity in a planar do-
main, although a fully rigorous implementation would require
3D velocity measurements.

Firstly, a Proper Orthogonal Decomposition (POD) of the
velocity fields is carried out to identify a low-rank space to
approximate the velocity data. This operation is carried out
through the snapshot POD implementation (Sirovich (1987)),
corresponding to the economy-size Singular Value Decompo-
sition:

U = ΨΣΦ
T (2)

In the above equation, Ψ and Φ are square unitary ma-
trices containing respectively the temporal and spatial modes,
and Σ is a diagonal matrix whose elements are the singular
values.

To obtain time-resolved measurements, we need to col-
lect data with time resolution from point probes. Practical
limitations of setup complexity limit the maximum number of
probes (see for instance Discetti et al. (2019), using 5 probes
for time-resolved flow estimation in a high-Reynolds-number
pipe flow). In order to increase the available information to
reconstruct each snapshot, in convection-dominated flow the
temporal information can be directly embedded to generate
virtual probes. This multi-time delay approach has been used
by several authors (Tinney et al., 2008; Hosseini et al., 2015;
Discetti et al., 2018) and is adopted also here to enhance the
probe information to reconstruct fields.

The probe data are then fed as input to a multilayer per-
ceptron (MLP), with the output being the time coefficients of
the most energetic temporal POD modes of the velocity fields.
Once the model is trained on a set of probe and PIV data cap-
tured simultaneously, it can encode the temporal modes of the
velocity field at any other time given the information provided
by the probes. Consequently, we are able to reconstruct an ap-
proximate time-resolved Ψ̃T R via the input of other subsequent
velocity data points at any given time, recovering from non-
time-resolved PIV information a time-resolved approximation
of the temporal modes of the target velocity field. The reason
for using POD as a field encoder resides in its simplicity of em-
bedding high-dimensional information (3D PIV data can eas-
ily provide 100k vectors per snapshot) in a lower rank space,
which simplifies the learning process and eases the conver-
gence. It must be remarked that the naive approach used here
to embed the time information can be overcome by using, for
instance, long short-term memory neural networks (Hochre-
iter & Schmidhuber (1997); Kalchbrenner et al. (2015); Greff
et al. (2017)). Here, the use of MLP is motivated by its sim-
plicity of implementation and its integration with the PINNs
architecture, although in future works recurrent architectures
may be considered.

Once this approximate time-resolved matrix Ψ̃T R is ob-
tained, the full velocity field may be recovered on the same
grid as the original PIV via ŨT R = Ψ̃T RΣPIV ΦT

PIV . The ap-
proximated time-resolved velocity field ŨT R is now resolved

both in space and time, but lacks precision due to accumula-
tion of errors from several sources, including above all POD
truncation and inaccuracies in the temporal-mode estimation
with the MLP. To compensate for those errors and regularize
the estimated fields, PINNs are used to improve the accuracy
of the fluid domain with the regularization being based on the
physical constraint of equation 1. Including boundary condi-
tions, PINNs can also augment the data disclosing additional
quantities, such as the pressure field, which was not available
at first.

The training of the MLP and of the PINN is carried out
separately. For the MLP, a simple cost function based on the
minimization of the error in the reconstruction of the temporal
modes is implemented. Regarding the PINN, the loss function
L contains three main contributions:

• the residual of the Navier-Stokes equations, LNS, com-
puted on a target refined grid to reduce truncation errors,

• the error with respect to the reference PIV velocity data
on the PIV grid, LPIV ,

• and, if available, a boundary condition on pressure at
any given point or set of points, Lp. This boundary condition
could arise from direct measurement of the pressure in points
of the domain (not necessarily the boundaries) and / or from
reasonable assumptions on the boundaries of the domain.

The residual of the NS equations is computed by the mean
squared error (mse) of each equation independently (continu-
ity and two momentum equations for a 2D configuration such
as the case presented in this article), i.e. LNS = mse(0,e1)+
mse(0,e2)+mse(0,e3), where 0 would be the reference resid-
ual value if NS were to be perfectly obeyed and e1,e2 and e3
the residuals of NS from the predicted model, correspondingly.
Similarly, LPIV and Lp are also calculated via mse between
the predicted quantities by the model and the reference PIV
and pressure values, respectively. It must be remarked that the
PIV data might be also affected by uncertainty, i.e. in princi-
ple, even in case of perfect assimilation and exact estimation
of the velocity field, the loss function would not be zero.

In previous studies the loss function is computed as the
sum of the three losses. In this work, we decided to opt
for an adaptative-weighted error function, i.e. the weight
of each error contribution is tuned during the training pro-
cess. More specifically, the error with the higher value is
adapted with the higher weight following a direct proportion-
ality rule, i.e. L = wNSLNS + wPIV LPIV + wpLp, where
w• = L•/(LNS +LPIV +Lp). Therefore, the total loss may
be written in a simplified manner as L = (L 2

NS +L 2
PIV +

L 2
p )/(LNS +LPIV +Lp). This approach is justified by the

need to compensate between two main counteractive effects
during training: on the first hand, enforcing the compliance of
NS tends to homogenize the system, whereas the input of ref-
erence values imposes that the solution is in accordance with
experimentally-accessible data (which, as discussed above, are
not necessarily accurate). In the authors’ experience, in the
first part of the training process the effort is more dedicated
to match the estimation with the experimental data (i.e. mini-
mizing LPIV ). As LPIV is reduced, LNS gains progressively
relative importance and the physical constraint regularizes the
data.

VALIDATION DATASET AND SETTINGS
To validate our proposed architecture, we make use of

synthetic data calculated via Direct Numerical Simulation
(DNS) of a fluid flow surrounding a pinball configuration
(Deng et al., 2020), i.e. three cylinders of diameter D located
at the vertexes of an equilateral triangle with lateral distance
l = 3/2D. The simulation consists of 20,000 snapshots (time
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Figure 1. Sketch of the proposed architecture applied to the wake of a cylinder (for illustration purposes).

interval of 0.1 simulation units) of a fluid flow at Re= 130 (i.e.
in the so-called chaotic regime) with x and y axis ranging from
[−5D,15D] and [−5D,5D], respectively.

To compute time-resolved pointwise fast probe informa-
tion, five virtual fast probes are located at the downstream edge
of the domain (x ≈ 15D), equally spaced along the vertical di-
rection. This replicates a realistic configuration in which the
intrusiveness of point probes should be minimized.

Synthetic PIV data are obtained by randomly seeding the
velocity fields with particles and adding random noise up to
10%. The particle seeding density is set to 0.02 particles per
pixel. The domain is discretized in 1024× 512 pixels, thus
corresponding to 51.2 pixels/D. A reasonable approximation
of a PIV processing can be obtained by considering a moving
average of the velocity sampled by the particles. The synthetic
PIV interrogation window is set to 32×32 pixels, with a 50%
overlap.

The point probes are recording velocity and pressure in-
formation at full time resolution, i.e. the data corresponding
to the probe location is saved for the 20,000 DNS snapshots.
Non-time resolved PIV snapshots are generated by considering
a time separation of 200 DNS time steps. This interval corre-
sponds to one flow throughtime, i.e. a fluid parcel entering the
domain takes in average 200 snapshots to leave it. This origi-
nates from the fact that the convective dimensionless velocity
corresponds to 1D per simulation unit, the length of the field
of view is 20D and the interval between snapshots is 0.1 sim-
ulation units. A total of 100 PIV snapshots is thus generated.
The synthetic PIV fields are analyzed with POD to extract the
temporal modes ΨPIV . In order to reduce the dimensionality
of the problem, a rank truncation is performed using the elbow
method (see e.g. Marutho et al. (2018)). For this test case, the
identified rank is R= 12. The main advantage of using POD as
an encoder is the dimensionality reduction of the output, being
it fixed at R coefficients corresponding to the most energetic
modes.

The temporal mode estimator, i.e. the MLP, is fed by
probe data corresponding to the 200 time instants past each
considered PIV snapshot. As detailed in the Methodology
section, in convection-dominated flows this correspond to a
multi-time delay approach. The selected timespan correspond
to one convective flow throughtime, as suggested by Discetti
et al. (2018). The MLP architecture consists of a set of
fully-connected dense layers of decreasing number of neurons.
More specifically, the number of neurons decreases from an
initial amount of 3×Nprobes × 200, where Nprobes = 5 corre-
sponds to the number of fast probes installed in the domain and
200 matches the number of time instants between each PIV
snapshot, to end up in a final dense layer with dimensions the

number of temporal modes to estimate, i.e. R = 12. We opted
for an Adam optimizer with an initial learning rate of 10−3

which is subsequently decreased parallel to the decrease of the
training loss to allow for the optimal reconstruction based on
empirical tests. This pyramidal structure allows for a fast and
steady convergence given the significant reduction of the or-
der of magnitude between the dimensionality of the input as
compared to the output variables.

Once the temporal resolution of the probes has been em-
bedded into the velocity fields with the MLP, we implement a
PINN to enhance the accuracy by adding physical constraints.
Our model for PINN consists on a fully-connected neural net-
work with 10 hidden layers, each of them containing 100 nodes
for each output variable, i.e. for a 2D domain, we have 300
nodes corresponding to the two components of velocity and
pressure. The same optimizer as for the MLP is implemented
here. We use for training of the PINN the outcome of the MLP
on the test dataset. This is representative of the case of direct
use of PINNs from probe data, i.e. once the flow estimator has
been trained. Clearly this same process could have been car-
ried out by considering the training data, although in this case
higher accuracy is expected for in-sample snapshots than for
time instants in between two PIV snapshots. In addition, to al-
low for a full reconstruction and extraction of the pressure field
(note again that this is an additional feature, not available in the
first place from PIV measurements), we use as boundary con-
dition the pressure values given at the position of the probes,
as if they were able to measure velocity and pressure simul-
taneously. We highlight that this boundary condition could
have been exchanged by any other pressure measurement at
any point within the domain.

RESULTS
Figure 2 shows the contour representation of the stream-

wise and crosswise components of the velocity field for an
instantaneous snapshot with its corresponding pressure field.
We include for the clarity of the comparison its associated PIV
fields, even though this information is not included in the train-
ing dataset. The synthetic PIV field is in this case projected on
the POD basis computed from the training dataset, and trun-
cated to include the same number of modes R estimated by
the MLP. The flow field estimated with the MLP and the reg-
ularized field after applying the PINN are also included. The
pressure field of the MLP is obtained from integration of the
pressure gradient computed with the momentum equation. A
robust iterative procedure is carried out, following the imple-
mentation by Chen et al. (2022). Even though the MLP is
already capable of achieving a good reconstruction of the ve-
locity fields, significant discrepancies with respect to the refer-
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Figure 2. Reference and reconstructed fields after each stage of the proposed architecture on the test dataset: (first row) DNS reference
velocity and pressure fields, (second row) reference PIV velocity field truncated to the best rank R (bear in mind that this row only exists
for reference purposes and actually no PIV information is available once the model is trained), (third row) velocity field estimation after
the MLP stage receiving fast probe measurements as input and reconstructing from the predicted temporal modes (note that pressure
has been computed directly by solving NS equations and therefore, carry the errors from the estimation using MLP), and (fourth row)
final regularized velocity and pressure fields after PINN.

ence DNS arise when computing pressure. The main sources
of error arise from the finite spatial resolution of the PIV fields
used for training (thus losing resolution in presence of large ve-
locity gradients, especially in the near field), from truncation
to rank R of the POD coefficients, and from temporal inconsis-
tencies due to the finite accuracy of the estimation process. On
the other hand, the PINN is able to achieve a more accurate
pressure field estimation by imposing physical constraints in
the reconstruction process.

The training error with respect to each of the contributions
of the loss function is depicted in figure 3. The decrease of the
total loss function indicates that the reconstructed fields from
the MLP are being continuously regularized by enforcing com-
pliance with the Navier-Stokes equations with the PINN. How-
ever, the figure shows that a plateau is reached after less than
100 epochs and more iterations would not result in an improve-
ment in accuracy. In our experience, this plateau results from
a compromise between the tendency of the Navier-Stokes reg-
ularization to homogenize the field whereas the estimated field
data from the MLP and the pressure boundary condition push
the network to comply with experimentally-accessible data. In
the end, the overall error after this regularization is reduced
significantly, as apparent in figure 2. A quantitative analysis is
also reported in figure 4, where the spatially-averaged squared

error is included for each snapshot of the testing dataset and the
spatiotemporally-averaged squared error of the same dataset is
presented in table 1. A clear reduction of the error with respect
to the estimation with the MLP is observed. Most remark-
ably, PINNs are able to smooth out snapshots with large errors,
which would have inevitably compromised the computation of
temporal derivatives. This is a clear advantage, considering
that the estimation of derived quantities often relies on the esti-
mation of time derivatives from temporally-resolved data (see
for instance pressure estimation (van Oudheusden, 2013)).

The PINN also provides additional information of the
fluid flow, such as the pressure field. We observe in figure
2 that the pressure field is in qualitative excellent agreement
with the pressure field of the original simulation, with most
of the discrepancies occurring in the region between the cylin-
ders and in the near field. Figure 4 shows indeed that a major
improvement is achieved as compared to a direct calculation
of the pressure distribution from the fields estimated with the
MLP. It must be remarked, however, that the PINN implemen-
tation allows to impose directly compliance with measured
pressure in more than one point (in this case, in the 5 probe
locations). For the pressure derivation with the velocity fields
estimated by the MLP, instead, we have simply imposed the
value of the pressure in one node for the necessary boundary
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Figure 3. Loss function evolution during the different epochs
of the PINN training process. Each contribution, namely,
residuals of the Navier-Stokes equations and errors with re-
spect to velocity and pressure reference data, are indicated.
The continuous decrease of the loss function guarantees the
convergence to a more accurate solution than the one resulting
after the MLP.

Figure 4. Mean square error (mse) of the velocity fields
with respect to the DNS for the reconstruction after the MLP
(dashed blue - u - and red - v - curves) and the regulariza-
tion with PINNs (solid blue and red curves) over one through-
time of the domain (corresponding to 200 snapshots at DNS
time resolution). The green curves show the mse of the pres-
sure with respect to DNS before (dashed, calculated directly
from integration of the pressure gradient computed imposing
the momentum equation with the velocity fields estimated via
MLP) and after (solid) the regularization via PINNs.

condition for the integration of the pressure gradient.
The error distribution between MLP and PINN with re-

spect to the DNS for an instantaneous snapshot is illustrated in
figure 5, showing an excellent improvement of the accuracy of
all the reconstructed fields.

CONCLUSIONS
We have proposed a solution to enable the estimation of

flow fields from a small number of sensors in convection-

Table 1. Spatiotemporally-averaged squared error of the
complete test dataset between the reference DNS and the esti-
mation after the MLP and the final regularization via PINNs,
correspondingly.

Feature mse(DNS, MLP) mse(DNS, PINN)

u 0.0174 0.0079

v 0.0227 0.0097

p 0.0432 0.0045

dominated flows, and increase the accuracy by embedding
physical constraints with a physics-informed neural network.
The proposed architecture leverages the capability of a MLP
to estimate temporal modes of POD and the output regulariza-
tion enforced by the PINN. POD allows for the identification
of a compact low-dimensional embedding of the most relevant
features of the flow fields, thus permitting a fast and effec-
tive training with an MLP fed by probes. The input infor-
mation is also enhanced using a multi-time delay approach,
where temporal information collected by probes is enforced as
spatial information on grounds of the validity of Taylor’s hy-
pothesis. This approach has been shown to work efficiently in
convection-dominated flows with estimation through extended
POD, and it is now enhanced with non-linear mapping through
a MLP.

Additionally, the proposed concept allows to use PINNs
for snapshot PIV data, i.e. in absence of temporal resolution,
embedding in the process also equations including temporal
derivatives (such as the momentum equations). This enables
extracting pressure fields by including proper boundary condi-
tions in the training process. The obtained results show a sig-
nificant accuracy enhancement of the predicted velocity fields
from MLP after the PINN regularization, and a reasonably
good accuracy also for pressure field estimations. Pressure
estimation could have also being achieved directly from esti-
mated fields, although the accuracy of this process suffers due
to truncation errors of the POD basis and inaccuracies of the
mapping from probe to field data, among other error sources.

Our results show that PINNs with the complete set of
Navier-Stokes equations can be used in conjunction with probe
data and a MLP estimator to obtain velocity fields from probe
data with a reasonably good accuracy. It must be remarked,
however, that the validation test case is based on a simula-
tion at relatively small Reynolds number of a wake flow. In
this configuration, POD is able to provide a compact basis,
thus easing the task of the estimation of the velocity fields.
This concept is to be tested on flows with a richer spectrum
of scales, in which the amount of modes to be reconstructed
might pose a significant challenge.
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Figure 5. Error with respect to the DNS of each feature of the flow field after (first row) MLP reconstruction on the PIV grid and
(second row) PINN regularization on a fine target grid (same as DNS). The improvement after the PINN is significant as compared to
the output of the MLP, more specifically regarding the pressure field calculated by direct application of NS to the estimated velocity
fields.
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