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ABSTRACT
We propose a deep probabilistic-neural-network architec-

ture for learning a minimal and near-orthogonal set of non-
linear modes from high-fidelity turbulent-flow data. Our ap-
proach is based on β -variational autoencoders (β -VAEs) and
convolutional neural networks (CNNs), which enable extract-
ing non-linear modes from multi-scale turbulent flows while
encouraging the learning of independent latent variables and
penalizing the size of the latent vector. Moreover, we intro-
duce an algorithm for ordering VAE-based modes with re-
spect to their contribution to the reconstruction. We apply this
method for non-linear mode decomposition of the turbulent
flow through a simplified urban environment. We demonstrate
that by constraining the shape of the latent space, it is pos-
sible to motivate the orthogonality and extract a set of parsi-
monious modes sufficient for high-quality reconstruction. Our
results show the excellent performance of the method in the re-
construction against linear-theory-based decompositions. We
show the ability of our approach in the extraction of near-
orthogonal modes with the determinant of the correlation ma-
trix equal to 0.99, which may lead to interpretability.

INTRODUCTION
Modal-decomposition techniques offer methods to iden-

tify a low-dimensional coordinate system for capturing domi-
nant flow features (Taira et al., 2017, 2020) useful for devel-
oping reduced-order models, analyzing non-linear and chaotic
dynamics, and designing efficient flow-control schemes.
Proper-orthogonal decomposition (POD) (Lumley, 1967) and
dynamic-mode decomposition (DMD) (Rowley et al., 2009;
Schmid, 2010) are two mode-decomposition methods based on
linear algebra that have been widely used to extract the dom-
inant spatio-temporal features in fluid flows. Balanced POD
(BPOD) (Rowley, 2005), spectral POD (SPOD) (Towne et al.,
2018), higher-order DMD (HODMD) (Le Clainche & Vega,
2017) and spatio-temporal Koopman decomposition (STKD)
(Clainche & Vega, 2018) are several successful variants of
POD and DMD for analysis of turbulent flows.

Besides the aforementioned linear methods for modal de-

composition of flow-field data, deep neural networks (DNNs)
have shown promising performance in learning a compact la-
tent representation of high-dimensional data by accounting for
the non-linearity in the low-dimensional mapping using non-
linear activation functions (Hinton & Salakhutdinov, 2006). In
particular, unsupervised learning based on autoencoders (AEs)
has been shown suitable for efficient mode decomposition and
reduced-order modeling with superior performance in flow re-
construction over the linear POD (Milano & Koumoutsakos,
2002; Eivazi et al., 2020).

Moreover, convolutional neural networks (CNNs) (Lecun
et al., 1998) and their ability in pattern recognition have re-
ceived increasing attention by the fluid-mechanics commu-
nity (Lee & You, 2019; Fukami et al., 2019; Kim & Lee,
2020; Kim et al., 2021; Guastoni et al., 2021). Murata et al.
(2020) proposed a CNN-based autoencoder architecture for
decomposition of flow-fields into non-linear low-dimensional
modes and to visualize each mode. They applied this so-
called mode-decomposing convolutional-neural-network au-
toencoder (MD-CNN-AE) to a relatively simple laminar flow
around a circular cylinder at ReD = 100 (where ReD is the
Reynolds number based on freestream velocity and cylinder
diameter). Their results showed the superior performance of
the CNN-based autoencoder over POD where the reconstruc-
tion of the flow from only two MD-CNN-AE modes contains
also the higher-order POD modes. The architecture of AE-
based methods allows a non-linear low-dimensional mapping
leading to a superior performance against linear-theory-based
methods. However, the AE-based methods do not benefit
from the useful properties of the eigenvalue or singular-value-
decomposition techniques, e.g., optimality and orthogonality.
In contrast to the POD modes, which are an orthogonal set
of basis vectors arranged in the order of their energy content,
the AE-based modes are neither orthogonal nor ranked. This
may lead to the lack of interpretability and robustness of the
AE-based modes (Vinuesa & Sirmacek, 2021). In order to ob-
tain ranked modes, Fukami et al. (2020) proposed a hierarchi-
cal CNN-AE architecture inspired by the concept of hierarchi-
cal autoencoder (AE) (Saegusa et al., 2004). The proposed
method was first applied to a laminar cylinder wake and its
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transient process and further to an in-plane cross-sectional ve-
locity field of turbulent channel flow at Reτ = 180 (note that
Reτ is the friction Reynolds number, based on channel half
height and friction velocity). They showed that the hierarchical
autoencoder (AE) can rank the AE modes following their con-
tributions to the reconstructed field while achieving efficient
order reduction. However, issues related to interpretability and
non-uniqueness remained unanswered.

In this paper, we propose a probabilistic method based
on β -variational autoencoders (β -VAEs) (Higgins et al., 2017)
and CNNs in order to extract a minimal (parsimonious) set of
near-orthogonal non-linear modes from turbulent flows. We
applied the proposed machine-learning method for the modal
decomposition of high-fidelity turbulent-flow simulation data
of a simplified urban environment. The flow simulation is
carried through well-resolved large-eddy simulation (LES) by
means of the spectral-element method. The results from the
proposed method are compared with the results from a con-
ventional CNN-AE model, a hierarchical CNN-AE model, and
POD. Through the training process of the available AE-based
modal-decomposition methods, the objective is to only mini-
mize the reconstruction loss. Therefore, the focus of the avail-
able AE-based methods for non-linear modal decomposition
is only on the performance of the model in the reconstruc-
tion and not on the properties of the learned modes, such as
orthogonality and minimality. In contrast, here we minimize
the correlation between the latent variables and penalize the
size of the latent vector in addition to the minimization of
the reconstruction loss. By solving this multi-objective opti-
mization problem using our CNN-βVAE approach, we seek
a minimal set of uncorrelated non-linear modes that are able
to accurately describe the turbulent flow-field data. The ob-
tained modes are extremely useful for the development of com-
pact reduced-order surrogate models or designing flow-control
strategies. Moreover, understanding the physics of the tur-
bulent flow through the extraction of uncorrelated non-linear
mechanisms is another incentive for applying CNN-βVAEs
for modal decomposition. In particular, the development of ac-
curate predictive models and understanding flow structures in
urban environments are of significant importance due to their
impact on urban planning, air quality management, and pollu-
tant dispersion (Vinuesa et al., 2015).

We applied POD using the singular-value decomposition
(SVD) method on the urban-flow database discussed above.
Figure 1 shows the eigenvalues λi (left) and the cumulative
eigenvalue spectrum ∑

j=i
j=1 λ j (right) normalized with the cu-

mulative sum of the eigenvalues ∑
j=m
j=1 λ j, where i indicates the

number of modes. We observed that 247 modes are required
to capture 99% of the energy as it is depicted by the vertical
red line in figure 1 (right). This result implies that it is imprac-
tical to represent turbulent flows as a linear superposition of a
few modal functions, and thus, more sophisticated algorithms
enabling a non-linear modal decomposition are required.

AUTOENCODERS FOR MODAL DECOMPOSI-
TION

An autoencoder is a deep neural network (DNN) with an
architecture suitable for unsupervised feature extraction. The
network comprises two parts: an encoder that maps the input
data to a low-dimensional latent space xxx 7→ rrr, and a decoder
that projects the latent vector rrr back to the reference space
rrr 7→ x̃xx. We refer to the encoder and decoder parts as E and
D, respectively. Through the model training, the autoencoder
learns to extract the most important features in the data that are

Figure 1. Eigenvalues λi (left) and the cumulative eigenvalue
spectrum ∑

j=i
j=1 λ j (right) normalized with the cumulative sum

of the eigenvalues ∑
j=m
j=1 λ j, where i indicates the number of

modes. The solid red line shows the number of modes required
to capture 99% of the energy.

required for reconstruction by optimizing the model parame-
ters www to minimize the reconstruction loss Lrec. The autoen-
coder architecture is attractive for modal decomposition as it
provides a framework that can incorporate non-linearity in the
mappings through the use of non-linear activation functions.

Another challenge in the modal decomposition of turbu-
lent flows is the process of information from input fields that
contain multiscale coherent features. The presence of coherent
features motivates the use of convolutional layers in autoen-
coder models to process the input information.

We consider three different types of AEs: CNN-based
(CNN-AE), CNN-based hierarchical (CNN-HAE) and CNN-
based β -variational (CNN-βVAE). For simplicity, we con-
sider the fluctuating component of the streamwise velocity
u as the input/output of the model, but it is also possible
to consider all the velocity components (u, v, w) as the in-
put/output. The first convolution layer contains 16 filters with
a size of (3× 3), and it is followed by a max-pooling layer
with P = 2. At each convolution step, we double the number
of feature maps to extract more information from the turbulent-
flow data while at each downsampling step we reduce the di-
mension. This allows the next layer to combine the features
individually identified in each feature map, enabling the ex-
traction of larger and more complex features for progressively
deeper convolutional networks from simple non-linear combi-
nations of the previous ones. Therefore, convolutional layers
can learn to recognize turbulent-flow patterns of various com-
plexity and scales (Guastoni et al., 2021). After five steps of
convolution and max pooling, the extracted features are flat-
tened and fed to fully connected layers to reduce the dimen-
sion to the latent vector rrr with a size of d. The latent vec-
tor rrr is mapped back to the reference space through the con-
secutive upsampling and convolution operations using nearest-
neighbor interpolation. Throughout the model, we use a filter
size of (3× 3) with the stride of one for convolution layers
and (2× 2) max pooling and upsampling operations with the
same stride. We employ the hyperbolic-tangent (tanh) func-
tion ϕ(z) = (ez− e−z)/(ez + e−z) as the non-linear activation
function, since it led to the best performance in our study. For
all the models, we use mean-squared error as the loss func-
tion for reconstruction Lrec and the Adam algorithm (Kingma
& Ba, 2017) to optimize the model parameters www. We employ
the early-stopping criterion and obtain the best model based on
the validation loss to avoid overfitting, where 20% of the data
is randomly selected for validation.

The CNN-HAE architecture was proposed by Fukami
et al. (2020), it is based on a hierarchy of CNN-AEs, and
it is aimed at extracting the modes ranked in terms of their
contribution to the reconstruction while achieving more effi-
cient data compression. To this end, the first subnetwork F1
is trained to map the high-dimensional data to a latent vector
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with size d = 1. The latent vector can be obtained using the
encoder part of the first subnetwork as rrr1 = E1(xxx). The sec-
ond subnetwork F2 is then trained to reconstruct the input data
at the output from a two-dimensional latent vector comprising
the first latent vector rrr1, which has already been obtained, and
the second latent vector rrr2, being updated through the training
of F2, as [rrr1 rrr2]. The subsequent networks are trained in a
similar way. In the present study, we employ the same hyper-
parameters as those of the CNN-AE model for the CNN-HAE.

Finally, we also use a modified version of the so-called
variational autoencoder (VAE) (Kingma & Welling, 2014),
which is a probabilistic generative neural architecture emerg-
ing from the combination of statistics and information the-
ory. The goal is to map the data into a latent distribu-
tion, from which new meaningful samples can be generated.
VAEs have gained increasing attention in the scientific com-
munity (Maulik et al., 2020), both due to their strong proba-
bilistic foundation and their valuable application in the field
of representation learning. The CNN-βVAE employed here,
which is represented in Figure 2, has the goal of minimizing
the correlation between the latent variables, motivating the net-
work to extract a set of orthogonal modes, also penalizing the
size of the latent vector d. This leads to an efficient represen-
tation of the high-dimensional data useful for flow analysis,
reduced-order modeling, and flow control. Note that the de-
coder part is the same as that of the CNN-AE model.
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Figure 2. Schematic view of the CNN-βVAE. The color cod-
ing for each layer is: 2D-convolution ( ), tanh activation
( ), max pooling ( ), reshape ( ), fully-connected layer
( ), upsampling ( ).

Let us consider a data sample xxx in some high-dimensional
space X with the distribution p(xxx). VAEs define two proba-
bility distributions: qφφφ (rrr|xxx), a so-called probabilistic encoder
(or recognition model) and in a similar vein pθθθ (xxx|rrr), which
is referred to as a probabilistic decoder (or generative model).
θθθ and φφφ denote the unknown parameters. The objective is
optimize the unknown parameters to maximize the so-called
marginal likelihood, which can be defined for each xxx as:

log pθθθ (xxx) = DKL(qφφφ (rrr|xxx)||pθθθ (rrr|xxx))+C(θθθ ,φφφ ;xxx), (1)

where the first right-hand-side (RHS) term is the Kullback–
Leibler (KL) divergence DKL between qφφφ (rrr|xxx) and pθθθ (rrr|xxx).
The KL-divergence is non-negative, which indicates that the
second RHS term C(θθθ ,φφφ ;xxx) is a lower bound on the marginal
likelihood, and can be written as:

log pθθθ (xxx)≥ C(θθθ ,φφφ ;xxx) =

−DKL(qφφφ (rrr|xxx)||pθθθ (rrr))+Eqφφφ (rrr|xxx) [log pθθθ (xxx|rrr)] .
(2)

This term is usually called evidence lower bound (ELBO).
Since the operation that samples a latent vector from qφφφ(rrr|xxx) is
not differentiable, we need to perform a change of variable, the
so-called reparameterization trick (Kingma & Welling, 2014),
to differentiate ELBO with respect to both θθθ and φφφ . We as-
sume qφφφ (rrr|xxx) to be a Gaussian distribution,

logqφφφ(rrr|xxx) = logN (rrr; µµµ,σσσ2I), (3)

where the mean µµµ and the standard deviation σσσ are outputs
of the encoder, and I is the identity matrix. We sample from
qφφφ (rrr|xxx) using rrr = µµµ + σσσ � εεε where εεε ∼ N (0,I) is an aux-
iliary normally-distributed random number, and � indicates
an element-wise product. Note that for the testing steps the
mean part of the encoder output µµµ of the CNN-βVAE is
taken as the vector of latent variables rrr. Moreover, the term
Eqφφφ (rrr|xxx) [log pθθθ (xxx|rrr)], which is the so-called log-likelihood,
encourages accurate reconstruction of the data and can be es-
timated as a negative reconstruction error in an autoencoder
setting (Kingma & Welling, 2014). This leads to the VAE cost
function C, and we can take the negative of it as a loss function
L for training the NNs:

L(θθθ ,φφφ ;xxx) = Lrec−
1
2

d

∑
i=1

(1+ log(σ2
i )−µ

2
i −σ

2
i ). (4)

In the field of representation learning (Bengio et al.,
2013), it is of interest to find a latent representation of the
high-dimensional data as an uncorrelated representation with
a minimal number of parameters (factors), the so-called dis-
entangled representation, which can be useful for a large va-
riety of tasks and domains. Higgins et al. (2017) proposed
to augment the original VAE loss function with a single hy-
perparameter β ≥ 0 that controls the extent of the learning
constraints. The goal is to encourage learning of statistically-
independent latent variables rrri and penalize the size of the la-
tent vector rrr. This can be obtained by minimizing the dis-
tance DKL [p(rrr)||∏i p(rrri)] between p(rrr) and the product of its
marginals. In practice, this is performed by upweighting the
KL term in the ELBO, see equation (2), with a penalization
factor β leading to the following loss function:

L(θθθ ,φφφ ;xxx) = Lrec−
β

2

d

∑
i=1

(1+ log(σ2
i )−µ

2
i −σ

2
i ) (5)

for β -VAEs. A detailed discussion on disentangling in β -
VAEs can be found in the works by Higgins et al. (2017);
Burgess et al. (2018); Achille & Soatto (2018); Locatello et al.
(2019).

RESULTS AND DISCUSSION
The key insight of the present study is to encourage in-

dependence of the latent variables rrr1, . . . ,rrrd to extract near-
orthogonal modes from turbulent flows using CNN-βVAEs.
This is to motivate disentangled representations in the lan-
guage of representation learning. We impose a limit on the
capacity of the latent information and motivate learning sta-
tistically independent latent variables using the penalization
factor β . The objective is to motivate orthogonality in the la-
tent space to obtain modes that are useful for flow analysis,
reduced-order modeling, and flow control.
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We define two evaluation metrics to measure the quality
of the reconstructions and the orthogonality (disentanglement)
of the latent variables. For reconstruction quality, we evaluate
the energy percentage Eu that is captured by the model recon-
structions as:

Eu =


1−

〈 n
∑

i=1
(u− ũ)2

n
∑

i=1
u2

〉

×100, (6)

where 〈·〉 indicates ensemble averaging in time, u and ũ denote
the reference value of the fluctuating component of stream-
wise velocity and its reconstruction, respectively, and n is the
number of grid points. To measure the independency of the
latent variables, we compute the determinant of the correla-
tion matrix multiplied by 100 and refer to it as detR, where
R = (Ri j)d×d is the correlation matrix defined by:

Rii = 1 and Ri j =
Ci j√
CiiC j j

, (7)

for all 1 ≤ i 6= j ≤ d, and Ci j denotes the components i, j of
the covariance matrix C. Note that detR is 100 when all the
variables are completely uncorrelated (Ri j = 0) and zero when
they are completely correlated (Ri j = 1). We report the value
of detR as a metric for independency of the latent variables.

We compare the performance of CNN-βVAEs with that
of CNN-HAEs, CNN-AEs and POD in terms of reconstruc-
tion accuracy and orthogonality of the latent variables. We
select d = 5 as the size of the latent vector for all models. For
the CNN-βVAE we use β = 10−3. Figure 3 shows the re-
construction of the first time step in the dataset obtained from
different methods in comparison with the reference data. It
can be observed that a more accurate reconstruction can be
obtained using NN-based methods in comparison with 5 POD
modes due to the introduction of non-linearity in the algo-
rithm. The CNN-AE model leads to the best reconstructions
with Eu = 94.22% while 32.41% of the energy is captured by
the 5 POD modes. Both CNN-HAE and CNN-βVAE models
also lead to excellent reconstructions with Eu of 91.84% and
87.36%, respectively, which are slightly lower than that of the
CNN-AE. For the CNN-βVAE, it is due to the fact that the
regularization with the KL term in the β -VAE loss function,
equation (5), induces a trade-off between the reconstruction
quality and learning independent representations. However,
our results show that excellent reconstructions can be obtained
using all the three CNN-AE-based models leading to Eu of
about 90% using only 5 modes.

The reconstruction results are also reported in a detailed
area between the two obstacles in figure 4 to provide a clear in-
sight into the fidelity of the reconstructions. It can be seen that
although some small-scale features are lost, all three CNN-AE
models are able to preserve the dominant structures of the tur-
bulent flow. However, POD can not reconstruct the turbulent
flow properly from 5 modes.

Next, we compare the independence of the latent variables
obtained from different methods. Orthogonality of the modes
is a useful property for flow analysis, reduced-order modeling
and flow control. Moreover, motivating the orthogonality of
the modes may lead to interpretability. Results are depicted in
figure 5 as the absolute value of the correlation matrix R cor-
responding to the latent variables from the CNN-HAE, CNN-
AE, CNN-βVAE with d = 5, and also POD with 5 modes. It

Figure 3. Reconstruction of the fluctuating component of the
streamwise velocity obtained from different methods, as in-
dicated in each panel, in comparison with the reference data.
The value in brackets on each panel indicates the obtained Eu.

Figure 4. Reconstruction of the fluctuating component of the
streamwise velocity obtained from different methods, as indi-
cated on each panel, in comparison with the reference data for
the zoomed-in area between the two obstacles marked by the
red rectangle.

can be seen that although the CNN-HAE model extract modes
in the order of their contribution in the reconstruction, the la-
tent variables are correlated leading to the lowest value for
detR among all methods. As mentioned above, it is possible
to motivate the disentanglement or independence of the la-
tent variables using CNN-βVAEs and obtain near-orthogonal
modes. It can be observed that the correlation between the
latent variables is reduced for the CNN-βVAE in comparison
to that of the CNN-AE, where detR is equal to 99.20 for the
CNN-βVAE method and 87.59 for the CNN-AE technique.

Figure 5. Correlation matrix R for the latent variables ob-
tained from different models as indicated on the panels. The
value in brackets indicates the corresponding detR for each
case.
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RANKING THE CNN-βVAE MODES
POD modes are sorted in terms of their energy content.

This property is extremely useful for understanding and ana-
lyzing the dominant patterns in complex flows. Fukami et al.
(2020) implemented hierarchical autoencoders to extract AE-
based modes in the order of their contribution in the recon-
struction, which requires training multiple NNs and might
be cumbersome especially for the extraction of higher-order
modes. Here, we propose a strategy for ranking the CNN-
βVAE modes. We showed that CNN-βVAEs are able to ex-
tract near-orthogonal and parsimonious modes from turbulent
flows. These properties allow us to rank these modes after the
training process and based on their contribution to the recon-
struction. In particular, we rank CNN-βVAE modes based on
the maximum Eu that can be obtained from q modes, where
q represents the rank. To this end, after the training process,
we first use the encoder to map high-dimensional data to the
latent vector E : xxx 7→ rrr. We zero out all the latent variables
except the ith variable, which leads to a latent vector r̂rri. Then,
we employ the decoder part of the CNN-βVAE to send this
latent vector to the original space D : r̂rri 7→ x̃xxi. This procedure
is performed for all the time steps. The energy percentage that
is captured by only considering the ith mode is evaluated as
E i

k. The first mode is selected as the mode leading to the max-
imum value of E i

k. For the second mode, we perform the same
procedure while we preserve the first mode and look for the
mode, which in combination with the first mode, leads to the
maximum value of E i

u. In a similar way, the third mode is
selected as the mode which gives the maximum E i

u in com-
bination with the first and second modes. We continue this
procedure to rank all the modes. Figure 6 illustrates the ranked
modes obtained from a CNN-βVAE model with d = 5 and
β = 10−3, together with the modes obtained from the POD,
CNN-AE, and CNN-HAE methods with d = 5. The POD and
the CNN-HAE modes are already ranked and we also perform
the ordering procedure for the CNN-AE modes. A clear re-
semblance can be observed between the first two modes of the
CNN-βVAE, see figure 6(a), and those from POD, as shown in
figure 6(b), indicating the ability of CNN-βVAEs in the extrac-
tion of interpretable modes from turbulent flows. These modes
correspond to the large-scale vortex shedding from around the
obstacles into the wake region. Moreover, these results show
that using the ranking procedure it is possible to sort the CNN-
βVAE modes based on their importance for reconstruction. It
also can be seen in figure 6(c) that it is extremely difficult to
relate CNN-AE modes to physical processes, a fact that is re-
ferred to as the lack of interpretability. We observe that al-
though the CNN-HAE model is able to extract large-scale fea-
tures first, the obtained modes may not be physically inter-
pretable, as shown in figure 6(d).

SUMMARY AND CONCLUSIONS
In this study, we propose a probabilistic deep-neural-

network architecture based on β -VAEs and CNNs for non-
linear mode decomposition of turbulent flows. The objective
is to learn a compact, near-orthogonal and parsimonious latent
representation of high-dimensional data by introducing non-
linearity in the process of dimension reduction and also min-
imizing the correlation between the latent variables, as well
as penalizing the size of the latent vector. This may lead to
a set of interpretable modes useful for flow analysis, reduced-
order modeling and flow control. Since the correlations among
the learned latent variables are minimized, we proposed an al-
gorithm to rank the VAE-based modes based on their contri-
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Figure 6. The ranked spatial modes obtained from the CNN-
βVAE (a), POD (b), CNN-AE (c), and the CNN-HAE (d). The
size of the latent vector d is equal to 5.

bution to the reconstruction. We applied the proposed CNN-
βVAE architecture for modal decomposition of the turbulent
flow through a simplified urban environment. Furthermore,
we compared the performance of the CNN-βVEs in terms of
the quality of the reconstructions and orthogonality of the ex-
tracted modes with that of the CNN-AEs and CNN-HAEs. Our
results from modal decomposition using POD indicates that
247 modes are required to obtain 99% of the energy from the
reconstruction. This indicates that it is challenging to repre-
sent turbulent flows as a linear superposition of a few POD
modes. Our proposed CNN-βVAE model with a latent vector
size d = 5 and a penalization factor of β = 10−3 leads to Eu of
87.36% against 32.41% obtained from POD, which shows the
excellent performance of the CNN-βVAE in the reconstruc-
tion of the turbulent flow from only five modes. This model
also leads to near-orthogonal modes, where detR is equal to
99.20. We showed that by constraining the shape of the la-
tent space and motivating orthogonality of the modes, we can
extract meaningful non-linear features where the first mode of
this CNN-βVAE model represents the large-scale vortex shed-
ding from around the obstacles into the wake. Our comparison
between the CNN-βVAE, CNN-HAE, and CNN-AE models
indicates that although motivating orthogonality of the modes
decreases the reconstruction accuracy, very good reconstruc-
tions can be obtained from five modes using the CNN-βVAE
leading to Eu of 87.36% against 93.93% and 91.84% of the
CNN-AE and the CNN-HAE, respectively. The CNN-βVAE
model leads to a set of near-orthogonal modes with the highest
detR among the AE-based models.

The proposed CNN-βVAE architecture can be extended
in future works for the development of reduced-order surro-
gate models or advanced flow-control methods, among others.
In particular, the proposed method can be employed for non-
linear modal decomposition of the data obtained from thermal-
imaging cameras in complex urban environments, with exten-
sive application in the context of urban air-quality forecast and
control.
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