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ABSTRACT 

The present work is concerned with the stability 

characteristics of compressible boundary layers with crossflow 

on a flat plate. Based on a boundary-layer model on a flat plate, 

Linear Stability Theory (LST) is used to investigate the modal 

properties of cross-flow instability. The results reveal that 

asymmetry and negativeness of frequency are fundamental 

features for crossflow-affected instability, and two theorems 

are proposed to reveal the intrinsic details. Particularly, the 

conjugate mode is introduced to make the negative-frequency 

disturbance suitable for physical applications. In addition, the 

association between cross-flow mode and Mack's mode is 

clarified. It is found that the cross-flow instability is integrated 

with Tollmien-Schlichting (T-S) mode or the first mode, and it 

cannot be distinguished as a single mode for most cases. 

 

INTRODUCTION 

Crossflow is commonly encountered in three-dimensional 

(3-D) boundary layers, such as swept wings, yawed cones and 

high-speed flight vehicles with generally 3-D configurations. It 

is well accepted that the existence of inflection point often 

indicates an inviscid instability, which is usually called cross-

flow instability. In most of the 3-D boundary layers, cross-flow 

instability co-exists with streamwise instabilities, like 

Tollmien-Schlichting (T-S) waves and Mack's modes. While in 

contrast with streamwise instabilities, cross-flow instability 

exhibits unstable disturbances that are traveling as well as 

stationary. Linear Stability Theory (LST) shows larger 

amplification rates for the traveling modes than the stationary 

ones. Concerning the crossflow-induced boundary-layer 

transition, however, stationary waves play an important role in 

low-turbulence environments, while the traveling waves 

dominate in high-turbulence environments (Saric, Reed & 

White 2003). 

Increasing understanding of cross-flow instability has been 

achieved in past decades in experiments and numerical 

simulations. Nevertheless, some common and fundamental 

issues about cross-flow instability still need to be figured out. 

Firstly, both the cross-flow mode and Mack mode exist in 

compressible 3-D boundary layers, whereas the association and 

difference have not been elucidated. The boundary-layer 

stability analyses on a yawed cone (Li et al. 2016) and an 

elliptic cone (Paredes et al. 2016) indicated distinct features 

between cross-flow instability and Mack's second-mode 

instability. However, the comparison between the evolvements 

of slow mode in 2-D (Ma & Zhong 2005) and 3-D (Xu et al. 

2018) compressible boundary layers implies some connection 

existing between cross-flow mode and Mack mode. Secondly, 

it is not well understood that how do the stability 

characteristics change when crossflow plays a role in a 3-D 

boundary layer. Specifically, the changes of interest include 

quantitative variations of growth rate, unstable region and 

dominance of different instabilities with increasing strength of 

crossflow in base flow. 

Such understanding about primary instability sheds light on 

the research of receptivity (Schrader, Brandt & Henningson 

2009; Balakumar & King 2012; Xu et al. 2018), secondary 

instability (Högberg & Henningson 1998; Malik et al. 1999; 

Xu et al. 2019) and flow control (Wassermann & Kloker 2002; 

Schuele, Corke & Matlis 2013; Corke et al. 2018) of cross-

flow instability-dominated boundary layers. Numerical 

simulations (Pruett, Chang & Streett 2000; Dinzl & Candler 

2017) and experimental tests (White & Saric 2005; Craig & 

Saric 2016) have benefited from the theoretical studies as well.  

Nevertheless, some common and fundamental issues about 

cross-flow instability still need to be figured out. Firstly, both 

the cross-flow mode and Mack mode exist in compressible 3-D 

boundary layers, whereas the association and difference have 

not been elucidated. The boundary-layer stability analyses on a 

yawed cone (Li et al. 2016) and an elliptic cone (Paredes et al. 

2016) indicated distinct features between cross-flow instability 

and Mack's second-mode instability. However, the comparison 

between the evolvements of slow mode in 2-D (Ma & Zhong 

2005) and 3-D (Xu et al. 2018) compressible boundary layers 

implies some connection existing between cross-flow mode 

and Mack mode. Moreover, the relationship between traveling 

cross-flow mode and Mack's first mode has not been addressed, 

despite that the frequency band of the two modes overlaps 

largely. Similar situation exists as well for traveling cross-flow 

mode and T-S mode in low-speed boundary layers. Secondly, 

it is not well understood that how do the stability 

characteristics change when crossflow plays a role in a 3-D 

boundary layer. Specifically, the changes of interest include 

quantitative variations of growth rate, unstable region and 

dominance of different instabilities with increasing strength of 

crossflow in base flow. Perhaps the most striking phenomenon 

caused by crossflow is the occurrence of zero- and negative-

frequency cross-flow modes, in which the zero-frequency 

(stationary) one was proved to be crucial to secondary 

instability and nonlinear interactions (Malik, Li & Chang 1994; 

Malik et al. 1999; Pruett, Chang & Streett 2000; Craig & Saric 

2016). The critical value, if it exists, of crossflow to induce 

cross-flow mode with non-positive frequency has not been 

unraveled yet. Thirdly, significance and characteristic of 

negative-frequency cross-flow mode have not been 

demonstrated in detail. Cross-flow instability with negative-

frequency region has been discovered for long (Mack 1984; 

Högberg & Henningson 1998; Itoh 1996). Mack (1984) 

pointed out that the opposite sign of frequency indicated 

opposite propagation directions of disturbances, which was 

consistent with the statement of Itoh (1996). However, the 

interpretation about negative-frequency mode is not in direct 

accordance with the eigen solution of LST equations. More 

details need to be disclosed to support a more satisfactory 

explanation.  
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In addition, in order to shed some light on the general 

characteristics of cross-flow instability, analyses are made 

under different Mach numbers, Reynolds numbers and 

temperature boundary conditions. However, systematic 

knowledge of cross-flow instability can hardly be obtained 

from case-by-case investigations aforementioned. Mack (1984) 

presented a comprehensive study of the linear stability of 2-D 

compressible boundary layers, based on the mean flow with an 

exact solution. While for 3-D compressible boundary layers, 

the counterpart research has been substantially hindered due to 

lacking a simplified solution of laminar base flow. Therefore, 

an appropriate boundary-layer solution needs to be obtained to 

initiate the comprehensive stability analysis of cross-flow 

instability. 

Following the research paradigm of Mack (1984), we 

developed a model problem for compressible boundary layers 

with parametric crossflow to study the linear instabilities due 

to the presence of typical crossflow. The main purpose of 

present work is to illustrate some fundamentals of cross-flow 

instability and to clarify how it associates with the instability 

modes already known in 2-D boundary layers. 

 
BASE FLOW 

A model problem for compressible boundary layer is 

established on an infinite flat plate (Fig. 1). The Cartesian 

coordinate system is set up as follows. The y direction points 

normal to the plate. Pressure gradient is equipped in parallel 

with the plate. The direction of pressure gradient is designated 

as x direction in Cartesian coordinate system, and the pressure 

gradient occupies the area over the plate. The z direction points 

normal to the x-y plane. The incoming flow consists of two 

velocity components in x and z directions, respectively. 

Depending on favorable or adverse pressure gradient, the 

inviscid potential flow accelerates or decelerate in x direction 

on the plate, while the z-direction velocity keeps unchanged. 

The pressure gradient in misalignment with velocity direction 

curves the inviscid streamlines over the flat plate. Similar flow 

configuration was used to study cross-flow instabilities in 

incompressible (Wassermann & Kloker 2003) and 

compressible (Tempelmann, Hanifi & Henningson 2012; Xu et 

al. 2018) conditions. 
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Figure 1.  The Cartesian coordinate system on a semi-infinite 

flat plate. The local swept angle Λ denotes the angle between 

directions of velocity and pressure gradient in potential flow. 

The subscripts '∞', 'e' and 'ref' represent incoming flow, 

boundary-layer edge and reference point, respectively. 

For the infinite conditions in z direction, the variables of 

the steady laminar base flow are independent of z. Reference 

point P is appointed at x=xref, where the local flow is concerned. 

The base flow is governed by quasi-three-dimensional 

compressible boundary-layer equations. By introducing stream 

function and Illingworth-Stewartson transformation, and 

assuming Falkner-Skan external potential flow in x direction, 

we obtain an ordinary-differential-equation (ODE) system 

under local-similarity assumption (Liu, 2021). 
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Boundary conditions are written as 

0: 0, 0,wf f g or                          (4) 

: 1.f g                                                         (5) 

Based on the solution of the ODE system, the streamwise 

and crosswise velocity components can be written as 
2 2 2
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Such flow model is named Falkner-Skan-Cooke(FSC) 

boundary layer. The crossflow distributions under different 

flow parameters are displayed in Fig. 2. The influence of local 

swept angle on crossflow in an incompressible boundary layer 

is demonstrated in Fig. 2(a). The crossflow deviates from zero 

and gets stronger with the increase of local swept angle until a 

largest maximum is reached on the profile. The largest 

maximum of crossflow occurs precisely at Λ=45o. In addition, 

the distributions of crossflow under two swept angles, which 

are mutually complementary, are identical. However, slightly 

different results appear in compressible boundary layers, where 

the largest maximum occurs at around Λ=70o and no special 

relations are observed for different local swept angles (Fig. 

2(b)). Pressure-gradient parameter affects the crossflow both in 

magnitude and direction, as shown in Fig. 2(c). Favorable 

pressure gradients produce positive crossflow components, 

while adverse pressure gradients act otherwise. Meanwhile, for 

positive values of m, it is observed that pressure gradient with 

larger magnitude produces stronger crossflow but thinner 

boundary layer. Lastly in Fig. 2(d), wall cooling is found to 

weaken the crossflow as well as thin the boundary layer. 

The crossflow exhibits a variety of profiles under different 

combinations of flow parameters, which provides rich diversity 

of base flow. Corresponding variations of crossflow-induced 

stability characteristics are expected to appear in the 3-D 

boundary layers. 

The crossflow in current model is controlled by pressure-

gradient parameter m and local swept angle Λ. On the one hand, 

when the local swept angle vanishes, the system is reduced to 

the one describing a 2-D compressible boundary layer with 

self-similarity (Stewartson 1964). On the other hand, when 

Mach number approaches zero, the system is reduced to the 

Falkner-Skan-Cooke flow describing an incompressible 3-D 

boundary layer (Cooke 1950). Therefore, the well-known 

stability characteristics in classical boundary layers can be 

extended to 3-D compressible conditions with the aid of 

current base-flow model. 
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Figure 2.  Variations of cross-flow profile with (a) local swept 

angle at Ma=0.001 (m=0.1), (b) local swept angle at Ma=6.0 

(Tw=Tad, m=0.1), (c) pressure-gradient parameter at Ma=6.0 

(Tw=Tad, Λ=30o) and (d) wall temperature at Ma=6.0 (m=0.1, 

Λ=30o). Tw≈7.0 for an adiabatic wall in this case. 

 

LINEAR STABILITY THEORY  

The modal properties of boundary-layer instabilities are 

analyzed with LST, which is well known and introduced in 

quite a lot literatures, say Mack (1984). Two facts are 

presented as theorems to elaborate the characteristics of 

crossflow-related instability. The proofs of the two theorems 

are straightforward, thus not presented here. 

The Conjugate-Solution Theorem is stated as below. 

Given  , , ,     as the solution of LST equation, the 

conjugate solution  , , ,        exists.  

  denotes the conjugate of α, and so do   and  . The 

related solution is named conjugate solution, or conjugate 

mode to each other. Considering all of the parameters as 

complex, it can be seen that the conjugate solution of 

 , , ,     is actually the negative and conjugate combination. 

Therefore, when a mode with positive frequency is found, 

there must exist a negative counterpart, and vice versa. Based 

on such association, a negative-frequency disturbance, which 

might be deficient in physical significance, relates to a 

positive-frequency disturbance with opposite wave-number 

vector and equal growth rate (-αi). This provides alternative 

interpretation for the disturbance with negative frequency. By 

revisiting Mack's assertion, it can be concluded that the 

negative frequency indeed signifies propagation-direction 

reversal of disturbance, which, however, corresponds to a 

different eigen solution. LST results about conjugate mode are 

demonstrated in next section. It should also be noted that the 

fact about conjugate mode holds for linear stability in all 

parallel flows, as long as equation and boundary conditions are 

homogeneous. 

Compared with 2-D flows, three-dimensionality of base 

flow in 3-D flows gives rise to deviation of stability 

characteristics. Different from the three-dimensionality of 

Mack's first mode in 2-D boundary layers, whose most 

amplified disturbance is three-dimensional, crossflow in 3-D 

base flows results in three-dimensionality of stability 

characteristics in two folds. Firstly, the cross-wise perturbation 

velocity ŵ  is non-zero for zero cross-wise wave number β. 
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Secondly, the linear growths of disturbances with opposite 

wave angles are not identical with respect to the streamwise 

direction. The somewhat straightforward results are supported 

by the fact that asymmetry of eigen solution arises due to the 

appearance of crossflow. This fact can be inferred from the 

Symmetry Theorem below. 

In a 2-D base flow (w=0), given   ˆˆ ˆ ˆ ˆ, , , , , , ,u v w T      as 

the solution of LST equation, a symmetric solution 

  ˆˆ ˆ ˆ ˆ, , , , , , ,u v w T       exists. Especially if 0  , 

ˆ 0w  . 

As a result, the stability characteristics, such as growth rate, 

wave angle and phase velocity, are symmetrically distributed 

with respect to β. This also implies that the disturbances 

pertinent to the symmetry solutions propagate with symmetric 

shape and identical growth rate in symmetric directions with 

respect to the streamwise direction. When crossflow plays a 

role in base flow, the proof of the theorem is ruined and 

consequently, the symmetry of the solution is broken. LST 

results about the asymmetry are demonstrated repeatedly in 

what follows. 

 

RESULTS 

Based on the base flow introduced above, spatial theory of 

viscous stability analysis is investigated. The boundary layer at 

Mae=4.5 is firstly considered to investigate the effects of 

crossflow on Mack's first and second modes, which are 

commonly encountered in 2-D conditions. The flow condition 

is chosen to be the one in wind tunnel (Kendall 1975), i.e., 

Te
*=65.15K and unit Reynolds number Ree

*=7.2×106m-1. The 

superscript '*' denotes the dimensional quantity and an 

adiabatic wall is assumed. This condition is also used by Ma & 

Zhong (2003) for boundary-layer stability analysis. The 

subscript 'e' will be dropped in what follows. 

Basic characteristics of linear stability 

Based on the knowledge of eigenmode in 2-D 

compressible boundary layers, global method (Malik 1990) is 

firstly used to identify the unstable mode from 2-D to 3-D 

conditions. Fig. 3 shows the spectra of eigen-values obtained 

with QZ algorithm. A discrete mode with positive growth rate 

is discovered for a 2-D boundary layer and highlighted by a 

circle in Fig. 3(a). The unstable mode is the well-known 

Mack's first mode, which is also the slow mode (Mode S) 

according to the terminology proposed by Fedorov & Tumin 

(2011). The result resembles the one obtained by Ma & Zhong 

(2003) except the fast mode (Mode F), which lies among the 

continuous spectra on the left of Fig. 3(a) and it is not 

discernible unless the frequency is moderately large. Eigen-

value spectra are also obtained for 3-D boundary layers with 

crossflow by imposing pressure gradient and increasing local 

swept angle. Mode S is still found to be the only unstable mode 

in each case and its trajectory is illustrated in Fig. 3(b). Starting 

from the 2-D condition without and with pressure gradient, the 

mode travels away due to the appearance of crossflow. Based 

on such observations, Mode S is identified to be the target 

eigenmode for crossflow induced instability analysis. An 

iterative technique will be used to solve the eigen-value 

problem for higher efficiency, and the result obtained by global 

method can serve as a first guess. 

The growth rate and phase velocity are calculated for 2-D 

mode (Fig. 4). Mack's first and second modes, both of which 

correspond to Mode S, locate obviously at two distinct 

frequency regions. This agrees with the result of Ma & Zhong 

(2003). Mack's second mode is observed to be more unstable 

than the first mode for 2-D disturbances, with and without the 

effect of crossflow. However, crossflow seems to stabilize both 

modes and shift the unstable frequency band in comparison 

with the 2-D boundary layers. Phase velocities are plotted for 

Mode S as well as Mode F in Fig. 4(b). Apparent deviation is 

observed for 2-D and 3-D base flows. While the local swept 

angle seems to make little effect on the phase velocity in 3-D 

base flows. 
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Figure 3.  Eigen-value spectra for boundary layers with 

Ma=4.5, Re=2000, ω=0.04 and β=0.1. (a) Discrete and 

continuous spectra for a 2-D base flow. (b) Trajectory of Mode 

S for 3-D base flows. 
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Figure 4.  Distributions of (a) growth rate and (b) phase 

velocity against frequency for 2-D modes (Ma=4.5, Re=2000, 

β=0). 

3-D stability characteristics are more concerned in 

boundary layers with crossflow. Based on the results of 2-D 

mode, eigen-value problems are solved for non-zero crosswise 

wave number, i.e., β≠0. The growth rate of Mode S is 

contoured in Fig. 5 at Λ=60o, around which the maximum of 

crossflow in base flow reaches the largest value. The result of a 

2-D boundary layer (m=0.1, Λ=0o) is also presented for 

comparison. Two separate unstable regions with local maxima 

are observed and identified to be Mack's first mode and second 

mode, respectively. Symmetry in growth-rate distribution and 

negativeness in frequency are two marked features. For the 2-D 

base flow, the growth-rate distributions of Mack's first and 

second modes are strictly symmetric with respect to the 

horizontal line β=0, as shown in Fig. 5(a). The unstable regions 

of the first mode for positive and negative β coalesce. While 

the two regions are separate at lower Reynolds numbers with 

still symmetric distribution of growth rate. The result is in 

good agreement with the prediction of the Symmetry Theorem 

given above. Furthermore, the disturbance of crosswise 

velocity in 2-D base flow is zero for the first and second mode 

(Fig. 6), as predicted by the Symmetry Theorem. 

 

 
Figure 5.  Growth-rate contours of the unstable modes in 

boundary layers (Ma=4.5, Re=2000, m=0.1) for (a) Λ=0o and 

(b) Λ=60o. 
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Figure 6.  Distribution of disturbing crosswise velocity for 2-D 

and 3-D most amplified disturbance of the (a) first mode and 

(b) second mode. Λ=0o for 2-D base flow and Λ=60o for 3-D 

base flow (Ma=4.5, Re=2000, m=0.1). 

In contrast, when crossflow plays a role in base flow, the 

symmetry is broken for both first and second modes. 

Meanwhile, the crosswise disturbing velocity becomes non-

zero for 3-D disturbances in 2-D base flows, and for the 2-D 

and 3-D disturbances in 3-D base flows (Fig. 6). Under the 

effect of negative-value crossflow produced by favorable 

pressure gradient, the unstable regions move towards the 
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direction in which β gets larger (Fig. 5(b)), i.e., opposite to 

crossflow direction. The asymmetry leads directly to the result 

that 3-D disturbance becomes the most amplified for the 

second mode, different from that in a 2-D boundary layer. 

More striking changes are observed for the first mode, whose 

unstable region is found to become almost one-sided. Firstly, 

the maximum growth rate exceeds that of the second mode, 

while the reverse is true in a 2-D case as demonstrated in Fig. 

5(a). This implies that crossflow produces greater effect on the 

first mode than on the second mode. Secondly, the unstable 

frequency band of the first mode extends to comprise the zero 

and negative frequencies, which is unique in 3-D boundary 

layers. The zero-frequency unstable mode is the commonly 

encountered stationary cross-flow mode, and the more 

amplified disturbance with positive frequency is the traveling 

cross-flow mode. However, it is noted that the so-called cross-

flow mode is no other than the slow mode, or Mack's first 

mode, depending on the terminology chosen. Crossflow in base 

flow does not essentially create a new unstable mode. 

Therefore, it seems more appropriate to name a stationary or 

traveling first mode rather than a cross-flow mode. This fact is 

supported by the numerical findings in a 3-D high-speed 

boundary layer presented by Xu et al. (2018). They obtained 

the disturbing crosswise velocity of Mode S, resembling the 

current result as shown in Fig. 6(a). It was illustrated that 

unstable traveling cross-flow wave can be evolved from Mode 

S upstream. 

It might be argued that cross-flow mode is naturally 

qualified to name the unstable mode particularly induced by 

crossflow. Nevertheless, conventional usages of mode disagree 

with this argument. On the one hand, based on the terminology 

of Fedorov and Tumin (2011), the cross-flow mode is the 

solution related to Mode S. Thus, it cannot stand as a mode 

coequal to Mode S or Mode F. On the other hand, based on the 

terminology of Mack (1984), the cross-flow mode belongs to 

the deviated Mack's first mode. No distinguishable features are 

observed pertaining uniquely to cross-flow mode, if it exists. 

Thus, it cannot be a coequal mode as the first or second mode 

as well. Therefore, cross-flow mode is less appropriate to 

signify the crossflow-induced unstable mode. This viewpoint 

will gain more support from stability analysis in the following 

subsections. 

 
Figure 7.  Growth-rate contour of conjugate modes (Mode S, 

Ma=4.5, Re=2000, m=0.1, Λ=60o). 

With the increase of cross-flow strength in base flow, the 

unstable region of the first mode deviates from that shown in 

Fig. 5(a). For weak crossflow, stationary mode stays stable. 

When the maximum of crossflow exceeds a threshold value 

(around 0.012 under such condition), stationary first mode 

begins to be unstable. At even larger cross-flow strength, the 

stationary first mode gets more unstable with broader 

bandwidth of crosswise wave number, and negative-frequency 

disturbances become unstable as well, as shown in Fig. 5(b). 

According to the Conjugate-Solution Theorem presented above, 

a conjugate solution can be easily obtained based on a known 

solution by turning the parameters into their negative and 

conjugate counterparts. Fig. 7 shows the growth-rate contours 

of Mode S as well as the conjugate Mode S. The contours are 

rotationally symmetric, while the two modes are related to 

different eigen solutions. Thus, the growth-rate contours cannot 

connect with each other continuously. The plane in Fig. 7 is 

divided into quadrant I, II, III and IV. The unstable wave of 

Mode S with negative frequency are surrounded with dashed 

lines in quadrant II, and the counterpart surrounded with solid 

lines in quadrant IV bears positive frequency. Therefore, when 

the negative-frequency mode needs to be considered, a more 

physical choice is to consider its conjugate mode with positive 

frequency and opposite wave numbers. The puzzle of negative-

frequency mode is thus solved by resorting to the conjugate 

mode. In addition, as the usually-encountered unstable wave of 

Mode S in quadrant I has positive frequency, its conjugate 

mode in quadrant III is far less concerned. Exceptions may be 

encountered in boundary layers with adverse pressure gradient. 

In such cases, the negative-frequency unstable region is 

stretched from quadrant IV to quadrant III, thus the counterpart 

in quadrant I is worth consideration. It is also observed that, 

despite the rotational symmetry of conjugate modes, symmetry 

with respect to crosswise wave number does not exist. This 

indicates that the distributions of growth rate and unstable 

crosswise-wavenumber band are not symmetric for a given 

disturbance, unless its frequency is zero. The current results 

combined with the Conjugate-Solution Theorem, provides an 

alternative approach to understand and treat negative-

frequency mode. The understanding is in accordance with that 

of Mack (1984) and Itoh (1996). However, evidence has long 

been absent until it is supplemented theoretically in current 

work. 

It should be noted that conjugate mode is significant in 3-D 

boundary layers regardless of Mach numbers. Borodulin et al. 

(2019) measured experimentally the unsteady cross-flow 

instability in incompressible boundary layers on a swept airfoil. 

The crosswise-wavenumber spectra reveal two unstable modes 

for a given positive frequency. The mode with negative 

crosswise wave number is named Mode 1 therein, and the 

other Mode 2. The Mode 1 has smaller growth rate and 

narrower unstable crosswise-wavenumber bandwidth. Besides, 

the two modes exhibit symmetry only for quasi-stationary 

disturbances. Based on such observations, it is believed that the 

Mode 2 is the cross-flow mode, as called in that paper, and the 

Mode 1 is the conjugate mode. 

The boundaries of growth-rate contours are extracted to 

denote unstable regions and plotted in Fig. 8(a) for various 

Reynolds numbers. The unstable region enlarges along with 

the increase of Reynolds number, and the stationary 

disturbance emerges at a Reynolds number of around 400. At 

moderately small Reynolds numbers, the unstable region of the 

first mode is completely one-sided. The maximum growth rates 

and corresponding wave angles are calculated for the first and 

second modes. The 2-D and 3-D results are plotted for 

comparison, as shown in Fig. 8(b) and Fig. 8(c). The growth 

rates of both modes are found to increase with Reynolds 

number in a 3-D boundary layer, which indicates a stabilizing 

effect of viscosity as in a 2-D case. Thus, the crossflow seems 
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not to alter the viscous effect. While the crossflow does change 

the specific instability characteristics, like growth rate and 

wave angle. Apparent discrepancies in maximum growth rate 

are observed for both modes (Fig. 8(b)). The first-mode growth 

rate in a 3-D base flow is unanimously larger than that in a 2-D 

base flow. The reverse is true for the second mode. The 

contrary effects mean that the first mode is destabilized, while 

the second mode is stabilized by crossflow. Consequently, the 

first mode becomes more unstable than the second mode in a 

broader Reynolds-number range. In addition, the most 

amplified disturbances for both modes are found to propagate 

in more tilted directions under the effect of crossflow. The 

wave angle of the second-mode disturbance with maximum 

growth rate varies between 4o and 5o, compared with the exact 

0o in a 2-D case. This result quantitatively reveals the 

asymmetry of the second mode as discussed previously. 
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Figure 8.  Characteristics of unstable modes at various 

Reynolds numbers (Ma=4.5, Λ=30o, Tw=Tad). m=0.1 for 3-D 

base flows and m=0 for 2-D base flows. (a) Unstable ω-β 

region; (b) Maximum growth rate; (c) Wave angle. 

Inconsistency can be observed about the effect of 

crossflow on second mode by comparing Fig. 8 with Fig. 5. 

Under the effect of crossflow, the second-mode maximum 

growth rate in a 3-D boundary layer is higher in Fig. 5, while 

lower in Fig. 8, than that in a 2-D boundary layer. This is 

because the 2-D base flow is subject to a favorable pressure 

gradient in Fig. 5, compared with the absence of pressure 

gradient for the 2-D base flow in Fig. 8. Accompanied by 

imposing an additional local swept angle Λ to create crossflow, 

the streamwise pressure gradient parameter decreases to 

m·cosΛ in Fig. 5. As pointed out by Zurigat, Neyfeh & Masad 

(1992), a streamwise favorable pressure gradient has a 

stabilizing effect on the second mode in a 2-D compressible 

boundary layer. According to this fact, decreasing favorable 

pressure gradient in streamwise direction suggests the 

increasingly unstable second mode, as shown in Fig. 5. In 

contrast, increasing streamwise pressure gradient is imposed to 

produce crossflow in Fig. 8, thus an decrease in second-mode 

growth rate is observed.  

Effects of Mach number 

In 2-D boundary layers, the behaviors of the first and second 

modes are well-known at varying Mach numbers. The first 

mode, which reduces to T-S wave in subsonic flows (Fedorov 

2011), exists in whole range of Mach number. In comparison, 

the second mode appears when Ma>2.2 and becomes dominant 

in hypersonic flows. However, limited understanding has been 

recognized about the crossflow-affected instabilities in 3-D 

compressible boundary layers. In this section, we investigate 

the Mach number effect on the stability in boundary layers 

with crossflow. 

The incompressible boundary layer is firstly considered by 

setting Mach number to be 0.001. As mentioned above, the 

base flow in current model reduces to FSC flow when Mach 

number approaches zero. At such low Mach numbers, Mack's 

second mode is not expected. In contrast, the T-S wave, which 

is more often termed as T-S mode or the first mode in this 

paper, is the main concern. In order to reveal the increasing 

effect of crossflow, a 2-D base flow is preliminarily considered 

and crossflow is added gradually. Fig. 9 shows the growth-rate 

contours for different local swept angles, corresponding to the 

cross-flow maximum of 0, 0.013 and 0.034 respectively. 

Starting with the use of global method, the unstable modal 



12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12) 

Osaka, Japan, July 19-22, 2022 

8 

 

solution is found to be related with Mode S for all three cases. 

In a 2-D base flow, the growth rate of T-S mode is 

symmetrically distributed (Fig. 9(a)), and the most amplified 

wave is 2-D as reported by Mack (1984). Apart from the T-S 

mode, a new unstable region arises with the increase of 

crossflow, as shown in Fig. 9(b). Again, the asymmetry of 

growth-rate distribution for T-S mode is observed due to 

crossflow. Despite the seeming disconnection of the two 

unstable regions, they belong to a common solution, thus they 

are actually connected by the stable region in between. The 

newly emerging unstable region bears lower frequency, higher 

growth rate and larger crosswise wave number than the T-S 

mode region. By comparing with Mack's (1984) result about 

FSC boundary layers, it can be identified that this region 

corresponds to cross-flow instability. At even stronger 

crossflow, the two unstable regions coalesce, accompanying 

with the decrease on the number of peaks from two to one (Fig. 

9(c)). The cross-flow instability and the T-S instability cannot 

be distinguished in this case. 

The appearance of cross-flow instability at Ma=0.001 differs 

strikingly from the crossflow-affected instability at Ma=4.5 as 

shown in the preceding subsection. In the highly supersonic 

boundary layers with crossflow, Mack's first mode deviates to 

exhibit some characteristics of cross-flow instability, despite 

that the cross-flow instability can hardly be distinguished. 

While in the incompressible boundary layers, crossflow 

produces an additional cross-flow instability competing with T-

S instability. The cross-flow instability occupies a separate 

unstable region at a moderate strength of crossflow. A local 

maximum of growth rate always exists for cross-flow 

instability, corresponding to the most amplified traveling cross-

flow wave. Although the T-S mode becomes fairly more 

unstable with the increase of crossflow, the intensity of cross-

flow instability grows even more sharply. Finally, the unstable 

region of cross-flow instability enlarges and swallows that of 

T-S instability. 

 

 

 
Figure 9.  Growth-rate contours of the unstable modes in 

incompressible boundary layers for (a) Λ=0o, (b) Λ=10o and (c) 

Λ=30o (m=0.1, Re=2000). 

The growth-rate distributions are contoured for unstable 

modes in compressible boundary layers at various Mach 

numbers in Fig. 10. The result in each case is obtained by 

increasing gradually the strength of crossflow from zero. Thus, 

the presented instabilities can be traced and identified based on 

2-D results. Under such moderate strength of crossflow, the 

intensities are comparable for different instabilities, if there 

exists more than one instability in the case. Cross-flow modes 

are shown for cases with Mach numbers less than 1.5. While 

for larger Mach numbers, the cross-flow instability cannot be 

distinguished to be a mode, as discussed previously. The cross-

flow mode and T-S mode get entangled at Ma=1.0 (Fig. 10(b)), 

and the mode entanglement is also observed for the first mode 

and second mode at Ma=6.0 (Fig. 10(f)). 

The name of cross-flow mode is usually encountered in 

incompressible and compressible boundary layers. However, 

current results reveal that the cross-flow instability cannot be 

recognized as an individual mode in most cases. The 

phenomenal similarity underpins the proposition of naming the 

cross-flow instability as a mode at low speeds. However, is 

should be borne in mind that the cross-flow instability is 

integrated in the T-S mode or the first mode. Particularly in 

highly supersonic boundary layers, the usage of cross-flow 

mode is ambiguous. 
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Figure 10.  Growth-rate contours of the unstable modes in 

compressible boundary layers (Re=2000, m=0.1, Tw=Tad) with 

(a) Ma=0.5, Λ=10o; (b) Ma=1.0, Λ=10o; (c) Ma=1.5, Λ=15o; (d) 

Ma=3.0, Λ=15o; (e) Ma=4.5, Λ=15o and (f ) Ma=6.0, Λ=15o. 

CONCLUDING REMARKS 

The stability characteristics of 3-D boundary layers subject 

to parametric crossflow have been investigated. A base-flow 

model on a flat plate is firstly designed to create boundary 

layer with crossflow. Considering that the crossflow is 

intrinsically resulted from crosswise pressure gradient, 

potentially fewest parameters, i.e., pressure-gradient parameter 

and local swept angle, are chosen to parameterize crossflow in 

the model. The model base flow is governed by an ODE 

system, which permits local similarity for the boundary layer. 
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Using the proposed model, we obtained a family of 3-D 

boundary layer, which can be reduced to the incompressible 

FSC flow and 2-D compressible self-similar boundary-layer 

flow. Based on such base flows, we extended the stability 

analysis from in 2-D cases to in 3-D cases at various Mach 

numbers.  

Asymmetry and negativeness of frequency are found to be 

fundamental features for cross-flow instability in 3-D boundary 

layers. Two theorems, i.e., Symmetry Theorem and Conjugate-

Solution Theorem are primarily proposed to reveal the intrinsic 

details. Both theorems have been proved theoretically and 

numerically. The symmetric distributions of stability 

characteristics in 2-D flows are demonstrated by Symmetry 

Theorem and LST results. The occurrence of instability 

asymmetry in a 3-D flow is believed to be attributed to 

crossflow, whose existence ruins the symmetry of the base flow. 

The occurrence of negative-frequency disturbance is revealed 

repeatedly in the results of stability analysis. According to 

Conjugate-Solution Theorem, a conjugate solution with 

positive frequency exists for a negative-frequency solution. 

Therefore, although the negative-frequency disturbance per se 

is notorious for lack of physical meaning, its conjugate 

counterpart is suggested to be resorted to for physical 

applications. Meanwhile, the Conjugate-Solution Theorem 

further indicates opposite propagating directions for the 

negative- and corresponding positive-frequency disturbances, 

which is accordant to what has been suppositionally recognized. 

Based on a large number of calculations, it is revealed that 

the occurrence of crossflow does not essentially create a new 

discrete solution. All of the LST solutions obtained in this 

paper are found to be related to Mode S, according to the mode 

terminology proposed by Fedorov and Tumin (2011). However, 

the crossflow does give rise to different behaviors of Mode S 

from those in 2-D boundary layers. The differences are in two 

folds. Firstly, the cross-flow instability, which is characterized 

as containing zero and negative frequency band, emerges. And 

it is found to be integrated in T-S mode at low Mach numbers 

or the first mode at high Mach numbers. The cross-flow 

instability can hardly be identified as an individual mode for 

most cases, even based on a loose definition of mode like 

Mack's first and second mode. But exceptions are found to 

exist for moderate crossflow in favorably pressure-gradient 

boundary layers with Mach number less than 1.5. Secondly, the 

crossflow seems to destabilize the T-S/first and second modes 

in general, by expanding unstable regions and increasing 

growth rates. Meanwhile, the unstable modes become more 

oblique towards crosswise or the opposite direction, depending 

on favorable or adverse pressure gradients. In comparison, the 

first mode is much more greatly affected by crossflow than the 

second mode. 
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