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ABSTRACT
The density and velocity fields of grid-generated turbu-

lence in a salt-stratified fluid are measured by the laser-induced
fluorescence (LIF) and the particle image velocimetry (PIV)
for several different mesh Froude numbers. The potential-
energy spectrum shows a local reduction near the primitive
wavenumber of stratified fluid kP =

√
N/ν (N is the Brunt-

Väisälä frequency, and ν is the kinematic viscosity of fluid),
which strongly supports the recent results from direct numer-
ical simulations by Okino & Hanazaki (2020). The examina-
tion of the Froude number dependence suggests that for very
strong density stratification, density perturbations below the
primitive scale are hardly generated, even for high Schmidt
numbers.

INTRODUCTION
The atmosphere and the ocean, when averaged in time,

are the density stratified fluids with larger density at lower al-
titude, and their dynamics are greatly influenced by the den-
sity stratification. For example, the meridional circulation of
the deep ocean is driven by the density difference of seawater,
whose density is determined by temperature and salinity.

The salinity, in particular, has a very small molecular dif-

fusivity, so that the Schmidt number Sc(= ν/κ) is as large as
700 (ν is the kinematic viscosity of fluid and κ is the diffu-
sion coefficient). According to a theory established by Batch-
elor (1959), a high-Sc(≫ 1) scalar in turbulence diffuses at the
Batchelor wavenumber kB = Sc1/2kK (kK is the Kolmogorov
wavenumber) if the scalar does not change the density of the
fluid and can be assumed to be passive.

Most of the experiments on density stratified turbulence
have been used saltwater, with which the density stratification
can be easily generated (e.g. Stillinger et al. 1983; Itsweire et
al. 1986; Fincham et al. 1996; Praud et al. 2005). Density
fluctuations in grid-generated stratified turbulence were mea-
sured by a conductivity probe in a series of water-channel ex-
periments by Stillinger et al. (1983) and Itsweire et al. (1986),
but the spatial resolution of the probe was not high enough to
resolve scales smaller than the Kolmogorov scale.

Recently, direct numerical simulations of decaying strati-
fied turbulence of high Schmidt numbers have been performed
to reveal the behaviour of small-scale density fluctuations be-
low the Kolmogorov scale (Okino & Hanazaki 2019, 2020).
In particular, Okino & Hanazaki (2020) studied the case of
Sc = 700 (corresponding to saltwater) and showed that the
power spectrum of potential energy (or density variance) de-
creases locally at the primitive wavenumber of stratified tur-
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Figure 1. Schematic of the experimental facilities. A uniform density stratification is initially generated in the test tank.

bulence kP =
√

N/ν (N is the Brunt-Väisälä frequency) after
the initial turbulence decays so much that the buoyancy ef-
fect reaches the Kolmogorov scale. The local reduction of the
potential energy spectrum was found to be caused by the per-
sistently counter-gradient vertical density flux at small scales
(cf. Hanazaki & Hunt 1996; Komori & Nagata 1996).

In the present study, we have measured the density (or
salinity) field of grid-generated turbulence in a salt-stratified
fluid by the laser induced fluorescence (LIF) with a spatial
resolution high enough to resolve sub-Kolmogorov scales,
with the aim of validating the numerical prediction (Okino &
Hanazaki 2020) and investigating the Froude number depen-
dence of the small-scale density fluctuations.

METHODS
In the present experiments, we excited turbulence by

moving a square grid horizontally in a salt-stratified fluid gen-
erated in a test tank, and measured the density and velocity
fields in their decaying process. The test tank with a square
bottom of 60×60 cm2 was filled with a linearly stratified water
up to a height of 28 cm by a two-tank method (Fortuin 1960)
(figure 1). The refractive index in the fluid was made constant
using ethanol (index matching; cf. Daviero et al. (2001)) to
improve the accuracy of the LIF measurement. The unper-
turbed density distribution ρ(z) (z is the vertical coordinate) is
obtained by sampling a small amount of fluid from cocks at-
tached to one of the sidewalls of the test tank and measuring
its density by a density meter (DMA4500M, Anton Paar) with
an accuracy of 5×10−5 g cm−3. The Brunt-Väisälä frequency
is determined by N =

√
(−g/ρ0)(dρ(z)/dz), where ρ0 is the

density at the bottom, and g is the gravitational acceleration.
We used two grids with different mesh widths M and

rod diameters d, i.e. (M,d) = (4.0 cm,0.4 cm) and
(8.0 cm,0.8 cm), but with the same solidity σ = (d/M)(2−
d/M) = 0.19. The square grid is moved horizontally along
the rail at the top of the tank by a DC motor (BXS230A-10S,
Oriental Motor) at a constant speed U .

The density distribution in a vertical plane is measured
by LIF using a continuous-wave laser (488 nm, 4 W). The
laser beam is vertically expanded into a laser sheet using a
cylindrical lens. As the fluorescent dye, we used Rhodamine
110, whose peak absorption wavelength is 496 nm and whose
peak fluorescence wavelength is 520 nm. The fluorescence of
Rhodamine 110 was photographed by a CCD camera (Hisense
4MC, Dantec Dynamics; C9300-024, Hamamatsu Photonics;
12 bits, 11 Hz) equipped with a band-pass filter with a trans-

mission wavelength of 534.5± 21.5 nm. A lens with a focal
length of 50 mm (Nikkor 50mm f/1.2, Nikon) is used to ob-
serve the area of 18×18 cm2 at the centre of the cross-section
of the test tank.

Since the dye concentration is made to be proportional to
the salinity (and the density) in the initial quiescent fluid, the
density remains generally proportional to the dye concentra-
tion even after turbulence is excited by the grid. Using the
principle that the intensity of the fluorescence increases with
the concentration of the fluorescent dye (the Beer-Lambert
law), the local density of the fluid can be determined by the
light intensity photographed by the CCD camera. We should
note that the proportionality between the density and the dye
concentration is incomplete below their diffusive scale due to
the difference in the Schmidt numbers of the fluorescent dye
(Sc ∼ 2100–3500) and saltwater (Sc ∼ 700). However, we
will restrict our focus to scales several times smaller than the
Kolmogorov scale, and will not discuss scales as small as the
Batchelor scale.

The velocity field is measured by the particle image ve-
locimetry (PIV) using a double-pulsed Nd:YAG laser (Dual
Power 65-15, Dantec Dynamics; Nano S PIV, Litron Lasers;
532 nm, 65 mJ, 15 Hz) and an acrylic emulsion as the seeding
particles.

The values of the mesh Reynolds number ReM = UM/ν
and the mesh Froude number FrM = U/(NM) used for the
present experiments are listed in table 1.

The horizontal Reynolds number and the horizontal
Froude number are defined by Reh = v4

rms/(νε) and Frh =
ε/(Nv2

rms), respectively, where vrms is the root-mean-square
(r.m.s) horizontal velocity and ε is the kinetic energy dis-
sipation rate. The buoyancy Reynolds number defined by
Reb = ε/(νN2) is a measure of stratification effects at small
scales and is related to the horizontal Reynolds and Froude
numbers by Reb = RehFr2

h . These non-dimensional numbers
at the time when the kinetic energy dissipation rate becomes
maximum are also given in table 1. The initial Froude numbers
in the present experiments are smaller than those of Itsweire et
al. (1986) (Frh > 2) though the initial Reynolds numbers are
similar (Reh ∼ 200). The initial buoyancy Reynolds number
is sufficiently larger than unity, so that small-scale fluctuations
would not initially be affected by buoyancy, unlike the experi-
ments by Praud et al. (2005).

The following two non-dimensional times are used to de-
scribe the results. One is the advection time tL =Ut/M and the
other is the buoyancy time tN = t/TBV = Nt/(2π), where TBV
is the Brunt-Väisälä period. The ratio of the two is determined
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Table 1. List of the parameter used for the experiments. The values at the time when the kinetic energy dissipation rate becomes
maximum are denoted by the subscript 0.

FrM ReM M (cm) U (cm s−1) N (s−1) ε0 (cm2 s−3) vrms,0 (cm s−1) Reh,0 Frh,0 Reb,0

16 9200 4.0 23.0 0.37 1.07 1.33 290 1.6 780

7.0 9200 4.0 23.0 0.83 0.978 1.28 270 0.72 140

1.8 9200 8.0 11.5 0.83 0.633 1.12 250 0.61 92

by the mesh Froude number, i.e.

tL
tN

= 2πFrM . (1)

RESULTS
We first show in figure 2 the temporal variation of the dis-

tribution of potential energy, (g2/2ρ2
0 N2)ρ ′2, and kinetic en-

ergy, (1/2)(v2 +w2), in a vertical plane for FrM = 16, where
ρ ′ is the density perturbation, v the horizontal velocity and w
the vertical velocity. At an early time of tL = 29.3, thin sheet-
like structures of high potential energy are distributed isotrop-
ically without a specific direction (figure 2a), since the buoy-
ancy time is smaller than unity (tN = tL/(2πFrM) ∼ 0.3) and
the buoyancy effect has not been significant at small scales.
Then, the distribution of kinetic energy is also isotropic (figure
2b). The smallest scale of potential energy is much smaller
than that of kinetic energy because the Schmidt number is
much larger than unity (Sc ∼ 700 for saltwater). Figures 2(c,d)
show that similar structures can be seen even at a later time
of tL = 78.8 when the buoyancy time is still less than unity
(tN ∼ 0.8). We note that the thin sheet-like structures of high-
Schmidt number scalar is observed also in isotropic turbulence
with a constant concentration-gradient of a passive (i.e. non-
buoyant) scalar (Brethouwer et al. 2003).

After the buoyancy time exceeds unity (figure 2e when
tN ∼ 1.8), the distribution of the potential energy becomes
anisotropic in that the fine structures of high potential energy
cluster together to form a horizontally long structure (whose
length is ∼ M). The kinetic energy distribution also has such
horizontal structures (figure 2f) though the structures as fine as
those seen in the potential energy distribution does not exist.

As time passes further (tN ∼ 3.0), small-scale structures of
potential energy have largely decayed, but large-scale clouds
composed of small-scale streaks can be identified (figure 2g).
The horizontal and vertical scales of the cloud are compara-
ble to those of high kinetic energy (figure 2h). The temporal
variation of the structure of the potential energy distribution
from thin sheets to clouds is consistent with the recent result
of direct numerical simulation at Sc = 700 (Okino & Hanazaki
2020).

We next compare the potential energy distributions for
three mesh Froude numbers (FrM = 16,7.0 and 1.8) at a fixed
advection time tL(∼ 30). It should be noted here that the buoy-
ancy times tN(= tL/(2πFrM)) are different for different mesh
Froude numbers. As mentioned earlier, the potential energy
distribution for FrM = 16 (figure 2a) is isotropic and does not
significantly affected by buoyancy since the buoyancy time
is tN ∼ 0.3(≪ 1). Similarly, for FrM = 7.0 (figure 3a), the
buoyancy time is still less than unity (tN ∼ 0.8), so that the
sheet-like structures of the potential energy are distributed al-
most isotropically. However, for the smallest mesh Froude

number of FrM = 1.8 (figure 3b), the buoyancy time becomes
so large (tN ∼ 3.0) that the potential energy distribution ex-
hibits horizontal cloud structures, resembling those observed
for FrM = 16 at the same buoyancy time (figure 2g). This sug-
gests that the pattern of the potential energy distribution is bet-
ter determined by the buoyancy time rather than the advection
time.

Figure 4 shows the temporal variation of the vertical spec-
trum of potential energy,

EP(kz) =
g2

2ρ02N2 ∑
ky

(∣∣∣ρ̂ ′(ky,kz)
∣∣∣2 + ∣∣∣ρ̂ ′(ky,−kz)

∣∣∣2) 1
kmin

,

(2)
where ρ̂ ′(ky,kz) is the two-dimensional Fourier component
of the density perturbation ρ ′(y,z) with a two-dimensional
wave-vector (ky,kz). In decaying stratified turbulence, the
Kolmogorov wavenumber kK decreases with time, while the
Ozmidov wavenumber kO increases, since the kinetic energy
dissipation rate decreases. In the present experiments, kK and
kO coincide at a buoyancy time of tN ∼ 1.

When FrM = 16 (figure 4a), the potential energy spectrum
exhibits Batchelor’s k−1 law near the Kolmogorov wavenum-
ber at tN = 0.6. As time passes, however, EP(kz) decreases lo-
cally and bends at the primitive wavenumber of stratified fluid
kP =

√
N/ν , in agreement with the result of DNS (Okino &

Hanazaki, 2020). The local reduction of the potential energy
at the primitive wavenumber is observed also for the stronger
stratification of FrM = 7.0 and 1.8 (figure 4b,c) though the
bending at kz = kP is less conspicuous.

The temporal variation of the amount of the potential en-
ergy at each wavenumber can be seen more readily from the
pre-multiplied spectrum (figure 5), where the area below the
spectral curve corresponds to the amount of energy. Initially
(tN ≃ 0.6), the pre-multiplied spectrum for FrM = 16 (figure
5a) has a plateau (kzEP(kz) ≃ const.) near the Kolmogorov
wavenumber, which corresponds to the k−1 law observed in
figure 4(a). When kK and kO approaches (tN ≃ 1.0), the poten-
tial energy decrease locally at kz = kP, generating two peaks in
the pre-multiplied spectrum (kzM ∼ 10 and 102).

Similarly for stronger stratification (FrM = 7.0 and 1.8),
we can identify the local reduction of the potential energy
at the primitive wavenumber and the resulting two potential-
energy peaks (figure 5b,c). It should be noted, however, that
the energy below kP increases relative to the energy above
kP as the stratification increases. In other words, for weak
stratification of FrM = 16 (figure 5a), the potential energy
is contained more at small scales (kz > kP) than large scales
(kz < kP), whereas for strong stratification of FrM = 1.8 (fig-
ure 5c), the energy is contained more at large scales (kz < kP).
The relative increase in the potential energy at large scales
would be because the potential energy is persistently converted
into the kinetic energy at the primitive wavenumber (Okino &
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Figure 2. Temporal evolution of the distribution of (a,c,e,g) potential energy (g2/2ρ2
0 N2)ρ ′2/U2 and (b,d,f,h) kinetic energy

(1/2)(v2 +w2)/U2 in the vertical plane for FrM = 16. (a,b) tN = 0.3, tL = 29.3, (c,d) tN = 0.8, tL = 78.8, (e,f) tN = 1.8, tL = 173.1, and
(g,h) tN = 3.0, tL = 288.1.
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Figure 3. Froude number dependence of the potential energy
distribution (g2/2ρ2

0 N2)ρ ′2/U2 in the vertical plane at tL ∼
30. (a) FrM = 7.0, tN = 0.8, tL = 36.2, and (b) FrM = 1.8, tN =

3.0, tL = 33.2.

Hanazaki 2020) earlier than it is transferred to high wavenum-
bers.

As the stratification becomes further stronger, the poten-
tial energy is expected to be absent at wavenumbers larger than
the primitive wavenumber, even at high Schmidt numbers. To
confirm this conjecture, we have performed a direct numerical
simulation at the initial Froude number of Fr0 =U0/(NL0) =
0.1 and Sc = 700, where L0 is the initial integral length and U0
the initial r.m.s. velocity. This initial Froude number is several
times smaller than the horizontal Froude number in the present
experiments (Frh > 0.6; cf. table 1). The numerical methods
are same as Okino & Hanazaki (2020).

Figure 6 shows the temporal evolution of the pre-
multiplied potential-energy spectrum at Fr0 = 0.1. Indeed, the
potential energy is not transferred to wavenumbers above the
primitive wavenumber (indicated by the vertical dotted line) at
all, and the most of the energy remains at the initial integral
scale (kL0 ∼ 3).

CONCLUSIONS
We have performed tank experiments using a salt-

stratified water to investigate the time evolution and the Froude
number dependence of the density field of grid-generated tur-
bulence. The distributions of the density and velocity in a ver-
tical plane are measured by LIF and PIV, respectively.

Initially when the buoyancy effect has not reached
wavenumbers higher than the Kolmogorov wavenumber, the
spectrum of potential energy exhibits the k−1 law near the
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Figure 4. The temporal evolution of the vertical spectrum
of potential energy EP(kz) for (a) FrM = 16, (b) FrM = 7.0,
and (c) FrM = 1.8. Symbols on each spectral curve show the
Kolmogorov wavenumber kK (circle), the Ozmidov wavenum-
ber kO (square) and the primitive wavenumber of stratified
fluid kP (triangle), which are defined by kK = (ε/ν3)1/4,
kO = (N3/ε)1/2 and kP = (N/ν)1/2, respectively.

Kolmogorov wavenumber. As time elapses and the buoy-
ancy effect extends beyond the Kolmogorov wavenumber, the
potential-energy spectrum shows a local reduction near the
primitive wavenumber of stratified fluid, which is in good
agreement with the recent result from a direct numerical sim-
ulation by Okino & Hanazaki (2020).

When the density stratification is very strong, density per-
turbations below the primitive scale are hardly generated, even
for high Schmidt numbers such as saltwater. This would be
because the potential energy is persistently converted into the
kinetic energy at the primitive wavenumber earlier than it is
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Figure 5. The temporal evolution of the vertical spectrum of
potential energy in the pre-multiplied form, i.e. kz ×EP(kz),
for (a) FrM = 16, (b) FrM = 7.0, and (c) FrM = 1.8. Symbols
on each spectral curve show the Kolmogorov wavenumber kK

(circle), the Ozmidov wavenumber kO (square) and the primi-
tive wavenumber of stratified fluid kP (triangle).

transferred to high wavenumbers.
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