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ABSTRACT
Recent progress of the discrete element method to ac-

count for roughness effects in wall bounded flows were ob-
tained with the use of the double averaged Navier-Stokes equa-
tions (Chedevergne, 2021). A volume averaging technique
was set up on the Reynolds averaged Navier-Stokes equations
and a new model for the form drag was derived (Chedevergne
& Forooghi, 2020). The whole model was tested on a large
panel of DNS configurations but some complementary valida-
tion on high Reynolds configurations were still required. Be-
sides, the central question regarding the inputs of the model
from a randomly rough surface remained opened. The present
paper aims at answering both issues by applying the developed
model to a set of high Renyolds number boundary layer exper-
imental configurations (Squire et al., 2017) and by proposing
a methodology of definition of the input parameters. The re-
sulting process provides a representative elementary roughness
from which very satisfactory agreements were obtained on the
velocity profiles for all the tested Reynolds number.

INTRODUCTION #1
The modeling of turbulent boundary layers over rough

surfaces is a long story which dates back to almost a century
with the founding works of Nikuradse (1937) and Schlichting
(1937). From these pioneer studies, the concept of equivalent
sand grain, whose height is denoted ks thereafter, was used in
most of the modeling approaches. In particular, a large col-
lection of corrections (Hellsten & Laine (1998); Knopp et al.
(2009); Aupoix (2015)) dedicated to RANS turbulence mod-
els and relying on this concept were developed. However,
several well-known drawbacks come along with all these cor-
rections such as non-physical behaviors of turbulent quanti-
ties in the viscinity of the walls and the strong dependence to
had-oc correlations to determine ks values. Additionnally, spe-
cific modifications are required to asses heat transfer since the
Reynolds analogy do not hold in the equivalent sand grain ap-
proach (Aupoix (2016)). Therefore, a more general approach
was also developed to account for roughness effects in turbu-
lent boundary layers.
The idea, introduced by Schlichting (1937), was to use block-
age factors to mimic roughness effects. This led to the de-
velopment of the discrete element method, especially thanks
to studies by Finson (1982) Robertson (1961) Christoph &
Pletcher (1983) Lin & Bywater (1982) or Taylor et al. (1985).
Source terms are introduced in the mometum and energy equa-
tions to reproduce the viscous and form drags and heat trans-
fer due to the roughness. The standard formulation of Tay-
lor et al. (1985) rely on a simple drag model associated

with a mixing length model. Although limited to boundary
layer flows or channel (pipe) flows, this model was improved
over the years and successfully applied in several configura-
tions (McClain et al. (2006); Hosni et al. (1993)). More re-
cently, the model was extended to RANS turbulence mod-
els (Stripf et al. (2008); Hanson et al. (2019)), the equa-
tions set still being derived from budgets on a control vol-
ume. Actually, Aupoix (2016) proved that the discrete element
method can be derived through the use of a volume-averaging
technique (Whitaker (1996)) leading to the Double Averaged
Navier-Stokes (DANS) equations, initially devoted to fluids
motion in porous media.
Until recently, the initial drag force model (Taylor et al.
(1985)) was unquestioned. Yet, Chedevergne & Forooghi
(2020) clearly pointed out the limit of the standard drag model
and proposed an improved version. In parallel, Kuwata &
Kawaguchi (2019) also found a drag model based on the
Darcy-Forchheimer law, providing similar results, and demon-
strating the need for a revisited discrete element model. The
main difficulty is then to find a suitable turbulence model,
compliant with the drag model and that reproduced observa-
tions made in the roughness sublayer. Kuwata et al. (2019) de-
rived a DANS model based on a Reynolds stress model (Craft
& Launder (1996)). It can be considered as the most advanced
model of that type to deal with roughness issues in turbulent
boundary layers. However, in their model, Kuwata et al. ne-
glected the dispersive stresses, ensuing from the use of volume
averaging, and do not consider heat transfer.
Recently, a complete DANS model dedicated to rough sur-
faces with heat transfer and relying on the k−ω SST model
of Menter (1994) was proposed. The model was tested on a
series of DNS databases and proved its ability to correctly re-
produce the velocity profiles in the rouhness sublayer and the
logarithmic region. To drive the model, the concept of repre-
sentative elementary roughness (RER) was introduced to com-
ply with the discrete element formalism. For academic rough-
ness distributions, the definition of the RER is straightforward,
but a process must be developed to extend the concept to ran-
domly rough surfaces. Additionally, this DANS formulation
was only validated on low-Reynolds configurations, quite far
from most of the industrial applications. Therefore, this paper
proposes a well-defined process to determine the RER and its
application to a high-Reynolds boundary layer rough configu-
ration Squire et al. (2017).

The DANS model
The model is detailed in Chedevergne (2021) and is

briefly recap thereafter. First, the RANS equations are volume
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averaged following Whitaker (1986). The blockage factor β ,
representing the volume fraction opened to the flow, is then in-
troduced in the equations. For a viscous incompressible fluid,
the resulting continuity and momentum equations read:

∂ 〈βui〉 f

∂xi
= 0

∂ 〈ui〉 f

∂ t
+
〈
u j
〉 f ∂ 〈ui〉 f

∂x j
=− 1

ρ

∂ 〈p〉 f

∂xi
+

1
β

∂

∂x j

(
ν

∂β 〈ui〉 f

∂x j

)

− 1
β

∂

∂x j

(
β

〈
u′iu
′
j

〉 f
+β ũiũ j
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For years, the drag coefficient Cd was modeled following Tay-
lor et al. (1985). Even though, some success were obtained
with this simple model, in combination with the use of a stan-
dard turbulence model (McClain et al. (2004); Stripf et al.
(2009); Hanson et al. (2019)), a comprehensive study of the
drag force distribution based on DNS results showed the ne-
cessity of more complex modelings. Two models (Kuwata
& Kawaguchi (2019); Chedevergne & Forooghi (2020)), hav-
ing completely different roots, were found to adequately re-
produce the drag forces obtained in the DNS. The present
drag force (2) makes use of the formulation developed
by Chedevergne & Forooghi (2020) which relies on the work
of Z̆ukauskas (1972) for banks of tubes in channel flows.
Because of this link, only roughness having circular cross-
sections can be considered. Then,

β = 1− πd2

4LxLz
(3)

with d the roughness diameter and Lx and Lz the longitudinal
and transverse spacings between roughness.
The drag coefficient is given by:

Cd = 1.5(αβ )2
ξ (4)

where α is a parameter controlling the density and ξ is a
decreasing function of the Reynolds number Red , based on
the local roughness diameter d. More details can be found
in Chedevergne & Forooghi (2020) and Chedevergne (2021).
The modeling of the Reynolds stress −

〈
uiv j

〉 f is made with a
modified version of the k−ω SST model. Additional source
terms are included in the turbulent scalar equations to force the
desired behaviors in the roughness sublayer. The main idea is
to aligned these sources terms with the drag force using func-
tion fd (2). Thus, sources terms Fk and Fω , respectively ap-
plied to k and ω equations, are given by:
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with ck = 2, cω1 = 2.7, cω1 = 0.1 and cω1 = 30. Geometrical
parameters, ϕ , the effective element slope, and βm, the mean
blockage, were found to be the most influential on the turbu-
lent properties within the roughness sublayer.
There exists no true model for the dispersive stresses −ũiũ j
that can be used in the DANS equations (1). However, in the
present context, the study is restricted to boundary layer con-
figurations where only the −ũṽ has to be provided. According
to Chedevergne (2021) one writes:

−ũṽ = Fdispνt
∂
√

k
∂y

Fdisp = e
−

(
y
kr
−1
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Representative Elementary Roughness
The boundary layer configurations examined in the

present study are those of Squire et al. (2017) obtained in the
large facility called High Reynolds Number Boundary Layer
Wind Tunnel (HRNBLWT) at the University of Melbourne.
For all these configurations, the wind tunnel floor was covered
with a sandpaper for which an optical 3D scan was performed
on a 25.4mm × 25.4mm sample. Surface statistics were
extracted from this scan and it was shown (Squire et al., 2017)
that the distribution of roughness heights for the sandpaper
surface is approximately normally distributed about the mean
elevation y. Figure 1 shows the scan of the sandpaper sample.
To perform computations using the DANS model described
above, a RER must be defined as explained by Chedevergne
(2021). Actually, four parameters are necessary but this figure
can be easily reduced to only two. First, considering only
a RER with circular wall parallel cross-sections, i.e. for
which relation (3) holds, limits the number of independent
parameters. Second, by assuming an isotropic distribution of
peaks and troughs on the surface, the spacings Lx et Lz can be
reasonably taken as equals. Finally to define the RER, only
the distributions of β and d are required, the spacing Lz being
deduced from relation (3).

Figure 1. Scan of the sandpaper sample

The blockage factor β and the diameter d can be
computed from the 3D scan for each altitude y using simple
image processing. At a given altitude y, which origin y = 0 is
taken as the bottom of the sandpaper sample, a planar slice is
extracted and the image is binarized. Two examples are shown
on figures 2a and 2a for y = y+0.2 mm and y = y respectively.
The blockage factor beta(y) is simply computed as the ratio of
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(a) y = y+0.2 (b) y = y+0.2

(c) y = y (d) y = y

Figure 2. Images and contours of slices of the sandpaper sample of figure 1.

Figure 3. Wetted perimeter Pw as a function of the altitude y.
The vertical dashed line shows the separation between k-type
and d-type roughness behaviors located at y = y0.

the area of the white region over the total surface, i.e. the ratio
of the surface opened to the flow. To compute the diameter
d(y), we make use of the definition of the hydraulic diameter

d =
4Sw

Pw
with Sw the wetted surface and Pw wetted perimeter.

Area Sw was already computed to access β . Perimeter Pw is
computed as the sum of all the contour lengths in the image.
Examples of image of contours are plotted on figures 2b
and 2d. If for y = y + 0.2 mm approximating the surface
roughness distribution with circular cross-section appears to
be quite obvious, this is far from being trivial at altitude y = y.
Final distributions of β and d with respect to y are given on
figure 4, while the perimeter Pw(y) is drawn on figure 3.

Before finalizing the process of building the RER,
a recursive issue about the discrete element method for
rough surface must be addressed. For randomly rough
surfaces, some parts may not particpate to wall transfer. For

Figure 4. Blockage factor β (right) and diameter d with re-
spect to the altitude y. The gray area represents the region
below y0 given in figure 3.

instance, McClain et al. (2004) and McClain et al. (2006)
pointed out the presence of dead water zones for dense rough
configurations and defined the notion of ”mean elevation”
from the melt-down surface. This concept was also invoked
by Aupoix (2016) to develop a thermal correction in the
context of an equivalent sand grain model. More generally,
the issue is related to the type of roughness encountered.
Following Perry et al. (1969), a distinction is made between
k-type and d-type roughness. The discrete element method,
based on the introduction of a blockage factor, is strictly
devoted to k-type roughness and is unable to predict the drag
increase due to d-type roughness. More specifically, the drag
models Taylor et al. (1985), citeKuwata19b or Chedevergne
& Forooghi (2020) are all designed to reproduce the form
drag of k-type roughness. For most of the surface of industrial
interest, k-type and d-type roughness resemble the illustration
of figure 5. For the present configuration, both types of
roughness exist and must be distinguished. Starting from the
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Figure 5. sketch of typical k-type roughness (left) and d-type
roughness (right).

top of sandpaper surface, the wetted perimeter is growing as
y is decreasing. This is a typical behavior encountered with
k-type roughness. However, for y below y0 = 0.54 mm, Pw is
a monotonic increasing function of y, and roughness should
be considered as d-type roughness. Practically, beta and d are
bounded by their lower values β (y0) and d(y0). The impact
of this choice is very limited on the equations set (1) and the
closure relation (4) since the flow is almost ”blocked” in this
region but this has a strong impact on the mean blockage
value βm that rules the source term in the ω-equation (5).

Results and discussion
Until now, the model was only tested at low Reynolds

numbers from DNS configurations. The objective is to check
the ability of the DANS model to reproduce boundary layers at
high Reynolds values and to assess its sensitivity to variation of
the Reynolds number. Among the experiments of Squire et al.
(2017), 6 cases were retained for which dimensionless bound-
ary layer thickness δ+ ranges from less than 4000 to about
30000. Table 1 provides the main characteristics of these con-
figurations.

To solve the DANS equations (1) we considered the in-
ner region of boundary layer approximations. The convective
terms were neglected and the equations were turned dimen-
sionless using the kinematic viscosity ν and the friction veloc-
ity uτ .
The origin of the y coordinate in the experimental data must
be shifted since the reference was set to the roughness crest.
We used the values obtained from the sample of figure 1 to
rescale the coordinate inducing thus a slight uncertainty on the
origin y = 0. This must not affect the experimental results, ex-
cept in viscnity of the wall within the roughness sublayer. In
addition, the wall correction parameter ε is taken as ε = h/2,
with h = 0.902 mm the roughness height in compliance with
the definitions given by Squire et al. (2017).
Profiles u+ = u/uτ are plotted on figure 6 for all configura-
tions. An additional smooth profile is depicted on the figure.
The corresponding computation was performed with the stan-
dard k−ω SST model Menter (1994).

As the Reynolds number δ+ is increasing, the roughness
function δu+ increases too, shifting down the velocity
profiles. The computed roughness functions are in very good
agreement with the experimental ones with a relative error
limited to 4%, except for the second configuration where it
reached 12%. Some discrepancies occur when the profiles
enter the roughness sublayers. It is hard to say whether it
comes from the different models, the definition of the RER or
some uncertainties in the measurements regarding the location
of the probe. Nevertheless, the remarkable point of all these
computations is that they were made from a single RER.
The effect of the Reynolds number variations on this RER is
very well captured by the whole DANS model. Besides, the
methodology followed to define the RER on such a complex
topology is efficient, even though reducing the rough surface
to a unique roughness with a circular cross-section does not
appear to be self-evident. Remark that it is hard to figure

out the RER design because the spacings are not constant.
There are indeed computed from the relation (3) and, in the
present case, Lz (= Lx) is an increasing function of y for y> y0.
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Table 1. Details of the rough wall configurations.
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Figure 6. Comparison of streamwise mean velocity profile for all rough walls configurations. Symbols (◦) show the experimental
data and solid lines stand for the DANS computations. Gray color is used for the smooth configuration.
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