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INTRODUCTION
Secondary flows are generated when a lateral variation

of the topography, such as streamwise aligned ridges, is im-
posed to a turbulent wall-bounded flow. In this case, the flow
field is characterized by vortical structures developing along
the streamwise direction known as Prandt’s vortices of the sec-
ond kind (Prandtl, 1952). These surfaces have gained increas-
ing importance in industrial applications because secondary
flows alter and modify the performances of fluid dynamics sur-
faces (Jiménez, 2004; Mejia-Alvarez & Christensen, 2013). It
has been shown that the flow organization and the strength of
such structures can depend on the shape of the ridges (Med-
jnoun et al., 2020) but how the geometry affects the genera-
tion mechanism of secondary structures and their strength is
not fully clear. Some authors (Wu & Christensen, 2007; Cas-
tro et al., 2021) observed that, in some cases, secondary flows
over different geometries appear to be similar and this suggests
a possible scaling of the vortical structures with a geometrical
property of the surface. In particular, Castro et al. (2021) con-
cluded that the strength of the secondary flows developing over
rectangular ridges depends on the ratio between the ridge spac-
ing and width and the flow organization is independent of the
spacing when scaled with the channel height. Other scaling
geometrical parameters have been proposed in literature, such
as the ratio between the wetted area above and below the ridge
mean height by Medjnoun et al. (2020). In this paper, we ad-
dress these questions by developing a tool based on linearized
Reynolds-Averaged Navier-Stokes (RANS) equations with the
Spalart-Allmaras (SA) turbulence model to close the system.
To contrast and compare the most common studied ridge ge-
ometries, we apply the present tool to elliptical, triangular and
rectangular ridges.

LINEARIZED RANS EQUATIONS
A pressure-driven channel with streamwise aligned ridges

is studied. A symmetric channel configuration is here consid-
ered. In the following, the streamwise, wall-normal and span-
wise directions, normalized with the channel half height h, are
identified by the cartesian coordinates (x1,x2,x3) respectively.
The coordinate system is centred on the channel mid-plane.

The flow is governed by the Reynolds-Averaged conti-
nuity and the momentum equations for the velocity compo-
nents (u1,u2,u3) scaled with the friction velocity uτ . The one-
equation SA turbulence model (Spalart & Allmaras, 1994) is
used as closure model for the eddy viscosity νt . A sketch of

the ridge geometries considered is reported in figure 1(a,b,c),
where S is the spacing between the ridges and W is the ridge
width. The entire methodology is based on decomposing the
flow field into a homogeneous flow over the flat channel and
the flow perturbation induced by the ridges. Defining ε as
the peak-to-peak distance of the ridge, we expand any time-
averaged flow quantity q using a Taylor series in ε as

q(x2,x3) = q(0)(x2)+ εq(1)(x2,x3)+O(ε2), (1)

where the zero-order term q(0) is the base flow solution in the
flat channel and the first-order term q(1) is the flow response
per unit of ridge height. Following Russo & Luchini (2016),
in the limit of small ridges, we assume that the intensity of the
secondary currents is proportional to ε . Thus, in the defini-
tion (1) higher order terms in ε are neglected. For streamwise
aligned ridges, we consider a streamwise invariant flow, thus
∂ ·/∂x1 = 0. Substituting the Taylor expansion (1) in the gov-
erning equations written using the streamwise velocity u1 and
streamfunction ψ formulation, and considering the terms at or-
der one in ε , we obtain
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where Γ is the zero-order streamwise velocity wall-normal gra-
dient, Reτ = uτ h/ν is the friction Reynolds number and τ

(1)
i j

is the Reynolds stress tensor perturbation. Similarly, to close
the system of equations (2) and (3), the SA transport equation
for the perturbation of the eddy viscosity ν

(1)
t induced by the

ridges is linearized (here omitted for brevity).
The tensor τ

(1)
i j must be expressed as a function of ν

(1)
t

and the other mean quantities. As already discussed in litera-
ture of noncircular ducts (Perkins, 1970; Bottaro et al., 2006),
when the linear Boussinesq’s hypothesis is used, no secondary
flows can be predicted because the streamwise momentum
equation (2) and the streamfunction equation (3) are decou-
pled. Hence, a nonlinear Reynolds stress model is necessary
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for the correct prediction of anisotropic stresses that are the
source of the secondary flows. In order to have a compact and
simple model to be manipulated, the Quadratic Constitutive
Relation (QCR) nonlinear stress model (Spalart, 2000) is here
integrated in the SA turbulence model. The Reynolds stresses
become

τi j = τ
L
i j −Cr1

[
Oikτ

L
jk +O jkτ

L
ik

]
, (4)

where Oik is the normalized rotation tensor and τL
i j = νtSi j is

the linear Reynolds stress tensor from the Boussinesq’s ap-
proximation with Si j the mean velocity gradient tensor. The
constant Cr1 = 0.3 is calibrated to match the anisotropy in
the outer region over wall-bounded turbulent flows following
Spalart (2000).

The effect of the ridges is introduced using linearized
boundary conditions (Luchini, 2013; Busse & Sandham,
2012). Expanding the velocity near the surface in a Taylor
series in x2 and enforcing the no-slip condition at the physical
surface, the streamwise velocity component at the lower do-
main boundary is given by the inhomogeneous boundary con-
dition

u(1)i

∣∣∣
x2=−1

+ f (x3)
∂u(0)i
∂x2

∣∣∣∣∣
x2=−1

= 0, (5)

i.e. the perturbation velocity at the boundary of the numerical
domain is proportional to the wall-normal gradient of the ve-
locity in the plane channel to preserve the no-slip condition on
the modulated topography. Similarly, inhomogeneous bound-
ary conditions are derived for the perturbation eddy viscosity
ν
(1)
t which vanishes at the physical surface. Finally, any peri-

odic wall modulation with an unitary ridge height is modelled
by the zero-mean modulation

f (x3) =
∞

∑
n=1

f n cos(nk3x3), (6)

where f n is the amplitude of the n-th wavenumber mode and
k3 = 2π/S is the fundamental wavenumber. The flow field over
any complex geometry can be reconstructed following the su-
perposition principle. Since the first-order equations are linear,
a complex solution is given by the constructive (or destructive)
interference of solutions at independent wavenumbers. The
entire methodology is extensively described in Zampino et al.
(2022).

RESULTS
Linear prediction of flow organization

Secondary flows are predicted over elliptical, rectangu-
lar and triangular ridges at Reτ = 1000 for duty cycle DC =
W/S = 0.5 and W = 0.25 (left panels), 0.5 (central panels)
and 1.0 (right panels) in figure 1. The contour lines of the
perturbation streamfunction ψ(1) and the colour map of the
wall-normal velocity perturbation u(1)2 are also reported to bet-
ter display the flow organization. Because symmetric channel
configurations are studied, subjected to a periodic wall mod-
ulation, only the bottom half-channel and a single ridge pe-
riod is here shown. For small spacing (left column), vortical
structures predicted for all three geometries show an upwelling

(downwelling) motion above the ridges (inside the troughs).
The secondary vortices occypy only a quarter of the channel
height and they are similar in size and strength for all three
geometries considered. Although some differences are pre-
dicted in the very near-wall region where the ridge geometry
affects the local flow organization, these differences are weak
and negligible. For increasing ridge width, the vortices grow
in size and strength until they occupy the entire channel half-
height (central column). Some differences are here evident in
the strength of secondary flows and stronger downwash veloc-
ity is predicted at the gap centre for rectangular ridges. For
W = 1, very large turbulent structures are observed for all ge-
ometries (right panels). In particular, for rectangular ridges,
the secondary flows are locked at the ridge edge due to the
strong discontinuity introduced by the ridge geometry. The
same aspect is also observed for elliptical ridges where the
secondary flows develop in proximity of the ridge edge. By
contrast, for triangular ridges, the secondary currents occur at
the flank of the ridge. For this case, tertiary flows at the centre
of the trough are predicted only for triangular ridges, and pro-
duce a local change of the flow direction. For specific spacings
and widths, tertiary flows can also be observed at the centre of
the trough for the other geometries when the gap between the
ridges is large enough to allow the turbulent structures to fully
develop. In fact, for large spacing, the vortical structures reach
their maximum size and a further increase of the spacing al-
lows tertiary flows to emerge.

For similar reasons, tertiary flows can be predicted over
the ridges when the ridge width is large enough. This only oc-
curs for rectangular and elliptical ridges, because of the sharp
discontinuity in the height of the ridge topography. By con-
trast, no tertiary flows over the ridge are observed for the tri-
angular shape because the deflection of the spanwise velocity
component induced by the flank of the ridges is weaker.

Studies not reported here show that the Reynolds number
affects only the strength of the secondary flows but the flow or-
ganization is unaffected. More specifically, for high Reynolds
number, the solution of the present model becomes Reynolds
invariant because of the turbulence model used. In fact, the
Spalart-Allmaras model (Spalart & Allmaras, 1994) is built
in order to obtain a collapse of the eddy viscosity profile in
the logarithmic layer for high Reynolds numbers. As a con-
sequence, the eddy viscosity profile and the Reynolds stresses
are asymptotically Reynolds number independent when scaled
with the friction velocity. For this reason, the results for
Reτ = 1000 were here reported and they are representative
of the secondary flows generated by the ridges also at high
Reynolds numbers.

Scaling of the dispersive stresses
In many experimental and numerical works, dispersive

stresses

σi j(x2,x3) = u(1)i (x2,x3)u
(1)
j (x2,x3)

are commonly used to study the generation of secondary flows.
In order to characterize their global strength using a single
scalar quantity, we introduce the integral

Rl
i j =

∫ S

0

∫ l

−l
σi j(x2,x3)dx2dx3, (7)

where we take l = 0.9 to discard the contribution in the near-
wall region. The map of R0.9

12 is plotted in the panels (d,e,f)

2



12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan, July 19–22, 2022

Figure 1. Contour lines of the perturbation streamfunction ψ(1) at Reτ = 1000 and for elliptical ridges (top panels), rectangular ridges
(central panels) and triangular ridges (bottom panels). Dashed lines are used for negative values. A sketch of the cases studied is
reported in panels (a,b,c). The flow organization is shown for the bottom half channels in the region delimited by the red lines. The
colour map of the wall-normal velocity perturbation u(1)2 is also reported to better display the flow organization above the ridges. The
duty cycle DC = 0.5 for all cases while the width varies from 0.25 (left column) 0.5 (central column) and 1 (right column). To help the
reader, a simplified representation of the ridges is reported at the bottom of each plot (bold black lines).

Figure 2. Integral dispersive stress R0.9
12 (d,e,f) and scaled dispersive stress R̂0.9

12 (g,h,i) are reported as a function of the ridge spacing
S and ridge width W for Reτ = 1000 for elliptical ridges (top panels), rectangular ridges (central panels) and triangular ridges (bottom
panels). The dashed lines identify the peak amplification configuration at (S,W ) = (1.25,0.67) A sketch of the cases studied is reported
in panels (a,b,c). The quantity ∆R̂0.9

12 is reported in panel (l) where the black contours are plotted for ∆R̂0.9
12 % = 2,5,10 and 15%. The

straight lines for W = 0.1S (blue) and W = 0.2S (red) are also shown.
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of figure 2 for Reτ = 1000 and as a function of S and W .
For all cases studied, we predict i) a region of high amplifi-
cation at (S,W ) ≈ (1.25,0.67), denoted by the intersection of
the dashed lines, where the strength of the secondary flows is
maximum, and ii) high amplification along a line at constant
W ≈ 0.67. However, the peak values across the three cases are
different (stronger for rectangular ridges), confirming that the
strength of secondary currents depends on the ridge geometry.
For high spacing S or width W , the quantity R0.9

12 for rectangu-
lar ridges also displays a second amplification peak not visible
for the other geometries and corresponding to the maximum
strength of the tertiary flows developing at the ridge centre (or
trough centre).

Despite the difference in the strength of the response, the
flow organization observed for the narrow ridge case W = 0.2
shown in figure 1 is similar for all geometries, suggesting that
the cross-stream velocities and dispersive stresses might be
scaled using an appropriate geometrical parameter. In this par-
ticular regime, one can assume that the surface perturbation
generating the secondary currents is localised in a narrow re-
gion at the wall and the effect of the ridge is proportional to
its cross-sectional area but not its geometry. For this reason,
we introduce the mean ridge height H as the ratio between
the cross-sectional area and the spacing S and use this quan-
tity to scale the perturbation velocity field. In addition, since
the dispersive stresses are given by the product of the veloc-
ity perturbations, the quantity R0.9

12 is scaled with the square of

the mean ridge height H. Maps of R̂0.9
12 = R0.9

12 /H2 obtained
for the three geometries are plotted in panels (g,h,i) of figure
2 as a function of the spacing S and the ridge width W . These
maps show strong similarities for the region characterized by
high ratio S/W and small W . We define these two areas of the
parameter space as the “isolated ridge” regime, where ridges
are small in width compared to the distance from one another,
and the “narrow ridge” regime, where the ridge is narrow com-
pared to the boundary layer thickness. To better visualise this
behaviour, we introduce the quantity

∆R̂0.9
12 % =

max R̂0.9
12 −min R̂0.9

12
mean R̂0.9

12
·100, (8)

where the function “max” is the maximum value obtained
across the three geometries for a fixed configuration (S,W ).
Similarly, we define the functions “min” and “mean” as the
minimum and the mean value, respectively. The quantity
∆R̂0.9

12 % can be interpreted as the difference in secondary flows
strength across the three geometries for the same width and
spacing. This quantity is plotted in figure 2(l) where selected
contours are reported for the difference of 2,5,10 and 15%,
to ease the visualisation. We can observe that the relative dif-
ference in scaled strength is small if the ridges are either nar-
row or isolated. If this condition is not met, for configurations
where the ridges are wide or tightly packed, the difference in
the scaled dispersive stresses across the three geometries in-
creases.

Flow organization and scaling behaviour
In order to compare the flow response for the ridge con-

figurations showing a scaling behaviour of the secondary flows
and the configurations where it does not hold, the contours of
the streamfunction ψ(1) and the map of the scaled wall-normal
velocity u(1)2 /H are reported in figure 3. Two configurations
are here considered: (S,W ) = (1.25,0.2) where ∆R̂0.9

12 % ≈

15% (top panels) and (S,W ) = (2,1) where ∆R̂0.9
12 % ≈ 150%

(bottom panels).
For the first configuration, we predict two counter-

rotating vortices that occupy the entire half-height of the chan-
nel. The fact that the flow organization is similar for all ge-
ometries for regimes where the ridges are narrow and isolated
explains why the strength of secondary flows can be scaled
with the mean ridge height. If the ridge is wide or tightly
packed, for (S,W ) = (2,1) (bottom panels), the flow topology
depends on the ridge shape and scaling the velocity compo-
nents with the ridge mean height does not lead to a collapse of
the response. Generally, an upwash (downwash) is predicted at
the centre of the ridge (trough) for the three ridge geometries
but this is not sufficient to produce a scaling of the secondary
flows. The position and the orientation of the vortices are dif-
ferent.

Velocity profiles
For a better characterization of the scaling of the sec-

ondary flows, the velocity components profiles divided by H
for elliptical, triangular and rectangular ridges are reported in
figure 4. Three cases are here considered for a constant spac-
ing S = 1.25 and varying width in order to display the scaling
behaviour for narrow and isolated ridges for W = 0.2 (left col-
umn), and the scaling breakdown for W = 0.67 (central col-
umn), corresponding to the maximum amplification configu-
ration, and for W = 1.0 (right column), corresponding to wide
ridges. The wall-normal velocity profiles for the three geome-
tries at the ridge centre and at the centre of the trough are re-
ported in the top and central panels, respectively. The span-
wise velocity component at the ridge edge is also provided in
the bottom panels. The wall-normal velocity u(1)2 /H at the
ridge centre (top panels) collapses in the far-wall region only
for W = 0.2 whereas for increasing ridge width the scaled pro-
files differ and no collapsing is observed. Close to the wall
(panel a), the velocity profiles show a peak value that depend
on the ridge geometry. This is due to the proximity to the
ridge that locally modify the flow field. For increasing width
(panel b and c), the velocity profiles differ. The ridge geom-
etry affects the peak value (higher for triangular ridges). For
increasing W , the strength of the vortices decreases, too.

Similarly, the wall-normal velocity at the centre of the
trough is plotted in panels (d,e,f) of figure 4. These velocity
profiles collapse for the entire channel height only for the iso-
lated ridge configuration (W = 0.2). To explain the collapse of
the profiles at the centre of the trough for narrow and isolated
ridges, one can observe that the secondary flows at the cen-
tre of the trough are not affected by the ridge geometry, since
the distance from the nearest ridge is large compared with W .
The peak value slightly changes for W = 0.67. For W = 1.0
where the gap is reduced, the velocity profiles are strongly de-
pendent on the ridge geometry and its effect is not negligible
when moving towards the centre of the channel. However, a
collapse of the curves is still observed in the near wall region
where the influence of the ridges is weak.

For all three geometries and for W = 0.2, the spanwise
velocity profiles in the bottom panels collapse along the entire
wall-normal direction. A negative peak is predicted at the wall
over the ridge edge where the Reynolds stresses are stronger.
Except for the case W = 0.2, the peak value depends on the
ridge geometry. Moving towards the channel centre, the veloc-
ity decreases in magnitude. For increasing width, the scaling
breaks down and some differences can be observed across the
three geometries.
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Figure 3. Colour maps of the wall-normal velocity u(1)2 scaled with H for elliptical, triangular and rectangular ridges. The Reynolds
number is Reτ = 1000 for (S,W ) = (1.25,0.2) (top panels) and (S,W ) = (2,1) (bottom panels). The contour To help the reader, a
simplified representation of the ridges is reported at the bottom of each plot (bold black lines). The black lines are the contours of
constant streamfunction ψ(1) (solid lines for positive values and dashed lines for negative values).

CONCLUSIONS
The present approach provides an approximation of sec-

ondary flows produced by different ridge geometries using a
linearized RANS based model. The model allows to quickly
predict the flow organization over a large variety of differ-
ent ridge configurations, at a reduced computational cost.
Here, secondary flows over elliptical, triangular and rectangu-
lar ridges are investigated. We assume that any flow quantity
can be decomposed as a zero-order and a first-order term cor-
responding to the flow perturbation generated by the ridges. In
the limit of small ridges, linearized equations are obtained for
the perturbation of the streamwise velocity u1 and the stream-
function ψ and they are solved by imposing inhomogeneous
boundary conditions to model the effect of the ridges. Since
the equations are linear, the superposition principle is applied
to reconstuct the flow field over complex geometries. Results
for Reτ = 1000 are reported as a representative case.

The flow organization is displayed for the three geome-
tries. Strong similarities in size of the secondary flows are ob-
served for narrow ridges with small width compared with the
spacing. For increasing width, the vortices grow in strength
and size until they entirely occupy the half channel height.
The flow organization differs and for wide ridges where the
secondary structures depend on the ridge geometry.

These similarities in the flow topology for narrow ridges
suggest that secondary structures can be scaled using an ap-
propriate parameter that depends on the ridge geometry. Since
the ridges are localized at the wall, the effect of the wall per-
turbation is assumed to be proportional to the cross-sectional
area of the ridges not their geometry. For this reason, the mean
ridge height H is here proposed as the scaling parameter.

The integral of the dispersive stresses are here used to
characterize the strength of secondary flows with a single
scalar quantity. The maps of R0.9

12 are are scaled with H2

and they collapse for the ridge configurations with small width
W , defining the ”narrow ridges” regime, and high ratio S/W ,
defining the ”isolated ridges” regime. For these configurations

the effect of the ridge geometry is negligible or confined to the
very near-wall region and the scaled velocity profiles collapse.
Finally, the scaled velocity components profiles for different
configurations are also compared. The velocity profiles col-
lapse only for the case corresponding to narrow and isolated
ridges. In particular, the collapse of the profiles at the centre
of the trough can be easily explained as the consequence of
the low influence of the nearest ridge. For increasing width,
the scaling behaviour breaks down because the flow topology
strongly depends on the ridge geometry.
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Jiménez, J. 2004 Turbulent flows over rough walls. Annu. Rev.
Fluid Mech. 36, 173–196.

Luchini, P. 2013 Linearized no-slip boundary conditions at
rough surface. J. Fluid Mech. 737, 349–367.

Medjnoun, T., Vanderwel, C. & Ganapathisubramani, B. 2020
Effects of heterogeneous surface geometry on secondary
flows in turbulent boundary layers. J. Fluid Mech. 886, A31.

Mejia-Alvarez, R. & Christensen, K. 2013 Wall-parallel stereo
particle-image velocimetry measurements in the roughness
sublayer of turbulent flow overlying highly irregular rough-
ness. Phy. Fluids 25, 115109.

Perkins, H. J. 1970 The formation of streamwise vorticity in
turbulent flow. J. Fluid Mech. 44, 721–740.

Prandtl, L. 1952 Essentials of fluid dynamics. Hafner.
Russo, S. & Luchini, P. 2016 The linear response of turbulent

5



12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan, July 19–22, 2022

0 10 20 30 40
-1

-0.5

0

-10 -5 0
-1

-0.5

0

-20 -10 0 10 20
-1

-0.5

0

0 5 10 15
-1

-0.5

0

-10 -5 0
-1

-0.5

0

-20 -10 0 10 20
-1

-0.5

0

0 5 10
-1

-0.5

0

-10 -5 0
-1

-0.5

0

-20 -10 0 10 20
-1

-0.5

0

(a) (c)

(d) (f)

(g) (i)(h)

(e)

(b)

Figure 4. Scaled profiles of the wall-normal velocity component at the centre of the ridge (top panels) and at the centre of the gap
(central panels). The spanwise velocity component is extrapolated at the ridge edge (bottom panels). The spacing is S = 1.25 and the
ridge width W = 0.2 (left column), 0.67 (central column) and 1.0 (right column). The profiles are obtained for the elliptical “Ellip”,
triangular “Tri” and rectangular “Rect” ridges for Reτ = 1000.

flow to a volume force: comparison between eddy-viscosity
model and dns. J. Fluid Mech. 790, 104–127.

Spalart, P. R. 2000 Strategies for turbulence modelling and
simulations. Int. J. Heat Fluid Flow 21, 252–263.

Spalart, P. R. & Allmaras, S. R. 1994 A one-equation turbu-
lence model for aerodynamic flows. Rech. Aerosp. 1, 5–21.

Wu, Y. & Christensen, K. T. 2007 Outer-layer similarity in the

presence of a practical rough-wall topography. Phys. Fluid
19, 085108.

Zampino, G., Lasagna, D. & Ganapathisubramani, B. 2022
Linearised reynolds-averaged predictions of secondary cur-
rents in turbulent channels with topographic heterogeneity.
arXiv:2111.08459.

6


