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ABSTRACT
We carry out direct numerical simulation (DNS) of flow

in a turbulent square duct by focusing on heat transfer effects,
considering the case of unit Prandtl number. Reynolds num-
bers up to Reτ ≈ 2000 are considered which are much higher
than in previous studies, and which yield clear scale separa-
tion between inner- and outer-layer dynamics. Close similar-
ity between the behavior of the temperature and the stream-
wise velocity fields is confirmed as in previous studies related
to plane channels and pipes. We find good agreement between
the Nusselt number of square duct and circular pipe flow when
the Reynolds number based on the hydraulic diameter is used,
thus corroborating the common engineering practice. Popular
engineering correlations for the heat transfer reveal deviations
up to 5% with respect to DNS data, which are nicely fitted by
a power law.

INTRODUCTION
Heat transfer in internal flows is a subject of utmost rel-

evance in mechanical and aerospace engineering applications.
A large amount of experimental and numerical studies have
been carried out in the past, and a variety of analytical and
semi-empirical prediction tools have been developed, which
are extensively reported in classical textbooks (Kays & Craw-
ford, 1993). Most studies have been carried out for the canon-
ical case of ducts with circular cross section, whereas much
less is known about the case of ducts with more complex ge-
ometry, which also have great practical relevance, for instance
in water draining or ventilation systems, nuclear reactors, heat
exchangers, space rockets and turbomachinery.

In that case, the typical engineering approach is to use
the same correlations established for the case of circular pipes,
by replacing the pipe diameter with the hydraulic diameter of
the duct (Kays & Crawford, 1993). However, the large scatter
in experimental data makes it difficult to quantify the actual
accuracy of semi-empirical prediction formulas.

Heat transfer in square ducts was first studied experimen-
tally by Brundrett & Burroughs (1967), who considered air
flow at bulk Reynolds number Reb = Hub/ν (where H = 2h

is duct side length and also duct hydraulic diameter, ub is the
bulk velocity, and ν the fluid kinematic viscosity) 33000 and
67000. Close similarity between the wall shear stress and the
heat flux distributions was shown (with quoted discrepancy of
±2%), which the authors connected with similar mixing action
of the secondary currents on momentum and temperature. As
a result, they observed that the ratio of the average friction and
heat-transfer coefficients for a square duct is approximately the
same as for a circular pipe. Measurements of the wall-normal
temperature profiles highlighted close universality when the
local wall heat flux is used for normalization, and the presence
of a sizeable logarithmic layer, with extrapolated value of the
scalar Kármán constant of κθ ≈ 0.51. Those findings were
qualitatively supported from later experiments by Hirota et al.
(1997), who also analysed temperature fluctuations and veloc-
ity/temperature fluctuations correlations, and found significant
distortions over the cross section associated with the secondary
motions. In that study, the inferred scalar von Kármán con-
stant was κθ ≈ 0.46, hence more similar to the values gener-
ally quoted for circular pipe flow, namely κθ ≈ 0.47 (Kader &
Yaglom, 1972).

Early computational studies of heat transfer in square
ducts mostly relied on the use of RANS models (Launder &
Ying, 1973), but heat transfer coefficient showed general un-
derprediction by about 10%. High-fidelity computational stud-
ies of heat transfer in square ducts have been quite limited
so far. Vázquez & Métais (2002) first studied turbulent flow
through a heated square duct by means of large-eddy simula-
tion (LES) at bulk Reynolds number Reb = 6000, considering
the case in which one of the walls is hotter than the other three.
Accounting for fluid viscosity variation with temperature, they
found that turbulent structures near the hot wall become larger
than near the other walls, in such a way that wall scaling is
satisfied.

In this paper we study heat transfer in fully developed
square duct flow with uniform internal heating and isothermal
walls, by carrying out DNS at unit molecular Prandtl number
(defined as the ratio of the kinematic viscosity to the scalar
diffusivity, Pr = ν/α), and at much higher Reynolds num-
ber than in previous computational studies, The present study

1



12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan (Online), July 19-22, 2022

Table 1. Flow parameters for square duct DNS. Box dimen-
sions are 6πh×2h×2h for all flow cases. Reb = 2hub/ν is the
bulk Reynolds number, Re∗τ = hu∗τ/ν is the friction Reynolds
number, and Nu is the Nusselt number. Nx×Ny×Nz are the
mesh points in the respective coordinate directions.

Case Reb Re∗τ Nu Nx Ny Nz

A 4410 150 18.1 512 128 128

B 7000 227 26.9 640 144 144

C 12000 365 41.9 768 208 208

D 17800 519 57.6 1024 256 256

E 40000 1055 109.0 2048 512 512

F 84000 2041 197.0 4096 1024 1024

is the continuation of previous efforts (Pirozzoli et al., 2018;
Modesti et al., 2018) targeted to studying turbulent flows in
square ducts by means of DNS.

1 METHODOLOGY
In the present work we use a fourth-order co-located

finite-difference solver, previously used for DNS of compress-
ible turbulence (Bernardini et al., 2021). Here, semi-implicit
time stepping is used for time advancement in order to relax
the acoustic time step limitation, thus allowing efficient oper-
ation at low Mach number (Modesti & Pirozzoli, 2018). The
streamwise momentum equation is forced in such a way as to
maintain a constant mass flow rate (the spatially uniform driv-
ing term is hereafter referred to as Π), periodicity is exploited
in the streamwise direction, and isothermal no-slip boundary
conditions are used at the channel walls. Six DNS have been
carried out at bulk Mach number Mb = ub/cw = 0.2 (where
cw is the speed of sound at the wall temperature), and bulk
Reynolds number Reb = 4400− 84000 (table 1), and here-
after labeled with letters from A to F. Navier–Stokes equations
are augmented with the transport equation for a passive scalar
field, with molecular diffusivity α = ν , in such a way that the
molecular Prandtl number is unity for all simulations. Simi-
larly to the streamwise velocity field, the passive scalar equa-
tion is also forced with a time-varying, spatially homogeneous
forcing term Q, in such a way that its mean value is maintained
in time.

The + superscript is used to denote quantities made
nondimensional with respect to the local wall friction, namely
with uτ = (τw/ρ)1/2 (τw = νdU/dy|w is the local wall shear
stress), and δv = ν/uτ , and the ∗ superscript is used to denote
quantities made nondimensional with respect to the perimeter-
averaged friction, τ∗w = h〈Π〉/2, namely u∗τ = (τ∗w/ρ)1/2, and
δ ∗v = ν/u∗τ . Likewise, for normalization of the temperature
field we will consider either the local friction temperature
θτ = qw/uτ , where qw = αdΘ/dy|w is the local wall heat flux,
or the global friction temperature θ∗τ .

RESULTS
We begin by inspecting the instantaneous streamwise ve-

locity and temperature fields in figure 1, which shows the flow
both in the cross-stream and wall-parallel planes. Instanta-
neous flow structure are not different from the ones typical of
canonical wall flows, and the near wall of both temperature and

streamwise velocity is populated with streaks, resulting from
sweep and ejections visible in the cross-stream plane. In the
cross-stream plane we note bulges of high-speed and hot flow
spanning two opposite walls, and interacting with the smaller
structures close to the wall. We immediately note a strong sim-
ilarity between streamwise velocity and temperature, with the
main difference that the latter reveals much finer structures due
to the absence of the smoothing action of the pressure gradient.
The picture that emerges from the instantaneous snapshots is
similar to the one of other canonical wall flows, instead, the
mean flow field is characterized by the presence of secondary
flows in the cross-stream plane.

Figure 2 depicts the mean temperature (contours) and ve-
locity (iso-lines) fields in the duct cross section, along with
representative cross-stream velocity vectors. This representa-
tion brings to light the presence of a pair of counter-rotating
secondary eddies in each quarter of the domain, whose ap-
parent role is bringing high-speed, and high-temperature fluid
from the duct core towards the corners, which are relatively de-
pleted with those. As a result, both the temperature contours
and the velocity isolines bend towards the corners, featuring a
bulging first noticed by Nikuradse (1930). This effect seems to
be non-monotonic with the Reynolds number, being most evi-
dent for DNS-A and DNS-E/F. As expected, temperature and
velocity contours bear close similarity, being nearly coincident
near the wall, and retaining the same shape farther off.

Figure 3 shows the mean temperature profiles as a func-
tion of the wall-normal distance up to the corner bisector
(white dashed line in figure 2), in global wall units (based
on the perimeter-averaged wall-shear stress). For reference
purposes, the mean temperature profiles obtained with the ex-
perimental fitting by Kader (1981) at matching Reτ are also
reported. Scatter among the temperature profiles is observed
near the wall as a result of the local variation of the wall heat
flux. Perhaps unexpectedly, this normalization yields good
universality away from walls, and near coincidence with the
pipe temperature profiles, at least at high enough Reynolds
number. This finding is probably related to the fact that mean
temperature transport away from solid walls is controlled by
the imposed spatially uniform heat source rather than by the
nonuniform wall heat flux. Inspection of figure 3 shows that
transition to the ’global’ scaling (which is controlled by the
spatially uniform heat source) occurs at a wall distance of
about 0.2h, which is also the lower limit for the core region
in canonical flows (Pope, 2000). These results support find-
ings previously reported for the streamwise velocity (Piroz-
zoli et al., 2018), and confirm that square duct flow is a con-
venient testbed for evaluating differences between local and
global scaling.

The global heat transfer performance of the duct is quan-
tified in terms of the Stanton number, St∗ = 1/(u∗bθ∗m), where
ub and θm are the bulk flow velocity and bulk temperature tem-
perature,

θm =
1

ubAc

∫
Ac

U(Θ−θw)dAc, ub =
1
A c

∫
Ac

UdAc. (1)

Additionally, we also quantify the heat transfer using the
Nusselt number, Nu∗ = St∗Reb Pr.

In figure 4 we compare the distributions of the heat trans-
fer coefficients (inverse Stanton number and Nusselt number)
obtained from the present DNS (squares) with those result-
ing from DNS of circular pipe flow (circles), from previous
LES (diamonds), and from experiments (triangles) in square
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ducts. We note that the latter two datasets were obtained for
Pr = 0.71, hence the Nu data have been rescaled by a factor
1/
√

Pr to compare with the present ones. As a reference, we
also report correlations widely used in the engineering prac-
tice, including that by Gnielinski (1976), from Kays & Craw-
ford (1993) and direct fitting the present DNS data with a
power-law expression which yields, Nu = 0.0216Re0.805

b . The
DNS data show good correspondence with the pipe DNS data
at matching Reb, with the exception of the lower Reynolds
number case, which supports validity of the hydraulic diam-
eter concept as the relevant length scale for heat transfer data
reduction. Agreement with experiments and LES in square
ducts is also quite good, on account of experimental uncer-
tainties and modeling errors in LES. It is interesting that dif-
ferences are levelled off when the popular representation in
terms of the Nusselt number is used, as in figure 4(b), hence
we believe that the 1/St representation should be used when
relatively small differences must be discriminated. Classical
correlations seem to suggest systematic difference of up to 5%
in the prediction of the heat transfer coefficient. This differ-
ence may be partly due to inaccuracy of correlations based
on old experimental data, or to the fact that those are mainly
trained for the Pr = 0.71 case, whereas here Pr = 1. Addi-
tionally, discrepancies can be attributed to our heat forcing
scheme, in which a spatially uniform heat source is prescribed,
which tends to slightly overpredict the heat flux as compared
to other approached in which the total heat flux is kept strictly
constant in time (Abe & Antonia, 2017). Slight adjustment of
the Kays–Crawford power-law formula coefficients seems to
yield very good representation of the DNS data.

An issue which deserves further investigation is why use
of the hydraulic diameter yields excellent results, at least in
the case of square ducts under consideration. Pirozzoli et al.
(2018) showed that universality of friction is connected with
near applicability of the logarithmic velocity law in the di-
rection normal to the nearest wall. It is worthwhile verifying
whether it is also the case of the heat flux coefficient. As pre-
viously shown, the temperature distributions are nearly univer-
sal away from walls, even when expressed in global wall units.
Hence, approximating the outer layer profiles with the classi-
cal log law, namely U∗ = 1/κ logy∗+C, Θ∗ = 1/κθ logy∗+
Cθ , and integrating over the duct cross section, the following
expression for the inverse Stanton number results

1/St∗ =
8

4Re∗2τ

∫ h

0

∫ z

0

[
1

κκθ

logy∗2

+ logy∗
(

Cθ

κ
+

C
κθ

)
+CCθ

]
dy∗dz∗ =

1
κκθ

(
log2 Re∗τ +3logRe∗τ +

7
2

)
+

(
Cθ

κ
+

C
κθ

)(
logRe∗τ −

3
2

)
+CCθ .

(2)

Equation (2) should be compared with the corresponding
expression for a circular duct with diameter D,

1/St =
1

κκθ

(
log2 Reτ +3logReτ +

7
2

)
+

(
Cθ

κ
+

C
κθ

)(
logReτ −

3
2

)
+CCθ ,

(3)

where Reτ = Duτ/(2ν). The two expressions are identical for

2h = D, hence provided the Reynolds number based on the hy-
draulic diameter is the same. It is interesting that equation (2)
is basically arrived at by neglecting the local wall shear stress
and heat flux variation along the duct perimeter, and disregard-
ing the flow deceleration at corners. Apparently, these effects
very nearly cancel out upon integration.

CONCLUSIONS AND FUTURE WORK
We have carried out DNS of square duct flow at the

unprecedented Reynolds number of Reτ ≈ 2000, wherein
Navier–Stokes equations have been augmented with the trans-
port of a passive scalar representing the temperature field. This
configuration corresponds to the case of forced convection in
which hot fluid is pumped through the duct and cooled at the
walls. In this respect, we find that the streamwise velocity and
temperature fields are very similar, both instantaneously and
on average.

The Nusselt number of square duct flow is in excellent
agreement with pipe flow data at matching Reynolds number,
which support the validity of the hydraulic diameter concept.
We explain this good match by using a simple model in which
the duct flow can be regarded as the superposition of four con-
current walls, where the flow is controlled by the closest one.
This simple cartoon is well supported by the mean temperature
profiles in a duct octant, which follow with good accuracy the
canonical law-of-the-wall. An extensive analysis of this DNS
dataset is available in our recent publication (Modesti & Piroz-
zoli, 2022), where we also discuss the temperature fluctuations
and the accuracy of eddy viscosity models for the turbulent
heat transfer. Future effort will be devote to study the flow in
asymmetrically heated square and rectangular ducts, which is
a common configuration in heat exchangers.
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Figure 1. Instantaneous streamwise velocity (a) and temperature (b) fields for flow case F. Wall-parallel planes are taken 15 wall units
from the walls.
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Figure 2. Mean streamwise temperature (Θ∗, flooded contours), mean streamwise velocity (U∗, lines), and mean cross-stream velocity
vectors (V ∗,W ∗) for flow cases A (a), b (b), C (c), D (d), E (e), F (f ). For clarity, only a subset of the velocity vectors are shown. Only
a quarter of the full domain is shown. The dashed diagonal lines indicate the corner bisector.
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Figure 3. Mean wall-normal temperature profiles scaled in global wall units for flow cases A (a), B (b), C (c), D (d), E (e), F (f ).
Profiles are plotted at several distances from the left wall, up to the corner bisector (see figure 2 for reference): z∗ = 15 (diamonds),
z/h = 0.1 (right triangles), z/h = 0.25 (triangles), z/h = 0.5 (circles), z/h = 1 (squares). The dashed lines denote fit of experimental
data (Kader, 1981), at matching Re∗τ .
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Figure 4. Inverse Stanton number (a) and Nusselt number (b) as a function of bulk Reynolds number, from the present DNS (squares),
from DNS of circular pipe flow (circles Pirozzoli et al., 2021), from previous LES (diamonds Pallares & Davidson, 2002), and from
experiments (Brundrett & Burroughs, 1967, triangles). The dashed line denotes the correlation by Kays & Crawford (1993), and the
dot-dashed lines the correlation Gnielinski (1976).
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