
12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan (Online), July 19-22, 2022

NUMERICAL SIMULATIONS OF NON-NEWTONIAN JETS

Giovanni Soligo
Complex Fluids and Flows Unit

Okinawa Institute of Science and Technology Graduate University
1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan

soligo.giovanni@oist.jp

Marco Edoardo Rosti
Complex Fluids and Flows Unit

Okinawa Institute of Science and Technology Graduate University
1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan

marco.rosti@oist.jp

ABSTRACT
Jets are a type of flow representative of more complex

flow configurations commonly found in nature and in indus-
trial applications. Their importance led to a significative
progress in the understanding of the dynamics of jet flows
via analytic solution of simplified equations, numerical sim-
ulations and experiments. Most of these studies however fo-
cused on Newtonian fluids, while very few works involved
non-Newtonian fluids. These latter fluids are characterized
by complex fluid properties, as for instance fluid elasticity or
shear-dependent viscosity, which lead to the onset of a richer
flowing behavior. Our aim is to advance the current under-
standing of jets of non-Newtonian fluids through direct nu-
merical simulations of different non-Newtonian fluids at low
Reynolds numbers. We observe an earlier transition to a turbu-
lent regime, here intended in a more general meaning as dis-
ordered fluid motions. This regime is qualitatively different
from Newtonian turbulence; turbulent kinetic energy spectra
allow us to provide as well a quantitative characterization of
this flowing regime.

INTRODUCTION
The flow of non-Newtonian fluids exhibits very different

flowing patterns depending on the flowing conditions; recent
experiments (Yamani et al., 2021) showed the onset of sub-
stantially different flowing pattern when the Reynolds (ratio of
inertial over viscous contributions) and Weissenberg (ratio of
the polymer relaxation time over a flow time scale) numbers
were changed. The observed flow is the result of the com-
petition of inertial, viscous and elastic contributions, ranging
from laminar flow, Newtonian turbulence, elasto-inertial fila-
ments and elasto-inertial turbulence. The onset of disordered
fluid motions in non-Newtonian fluids is also observed at a
Reynolds number much lower for what observed for Newto-
nian fluids in the very same flowing configuration. This find-
ing hints at the existence of a different pathway to turbulence;
it has been proven that fluid elasticity is indeed a key element
in triggering flow instabilities (Joo & Shaqfeh, 1994; Kumar
et al., 2021; Walkama et al., 2020; De et al., 2017; Grilli et al.,
2013; Joo & Shaqfeh, 1992; Khalid et al., 2021). In this work

we will focus on a relatively unexplored region of the param-
eter space: the effect of increasing Weissenberg numbers at
low Reynolds number will be investigated. We consider three
different fluid models: Carreau (shear-thinning), Giesekus
(shear-thinning and viscoelastic) and Oldroyd-B (viscoelas-
tic). A reference simulation of a Newtonian fluid completes
the database.

We compute the classical jet statistics, namely the center-
line velocity and jet thickness; previous works with a FENE-P
model (shear-thinning and viscoelastic fluid) showed that these
bulk quantities recover the power-law scalings obtained for a
Newtonian fluid in laminar (Parvar et al., 2020) and turbulent
(Guimarães et al., 2020) planar jets. The universal validity
of these scaling laws can be traced back to their derivation: no
hypothesis on the fluid model is taken, hence it is expected that
they still hold true for non-Newtonian fluids and apply as well
to different non-Newtonian fluid models. We then proceed to
quantitatively characterize the different flowing patterns ob-
served at the highest value of the Weissenberg number. It is
clear that when the fluid is characterized by flow elasticity, a
different power-law scaling appears in the energy spectrum of
the turbulent kinetic energy.

In the following, the numerical method we use for our
simulation and the simulation setup are reported in the first
section. We then present the main results from our numeri-
cal simulations, starting from a qualitative visualization of the
stream-wise velocity field at steady-state, moving then to the
bulk statistics and lastly to the turbulent kinetic energy spec-
trum. In the last section, the main findings are summarized.

COMPUTATIONAL SETUP
To simulate the dynamics of the planar jet we use di-

rect numerical simulations of the Navier-Stokes and continu-
ity equations, respectively equations 1 and 2, coupled with a
transport equation for the non-Newtonian extra-stress tensor,
equation 3. We use u as the fluid velocity, t is time, ρ is the
fluid density (homogeneous in space and constant in time), ηs
and ηp respectively are the solvent and polymeric dynamic vis-
cosity, p is the pressure, τ is the non-Newtonian extra-stress-
tensor, λ is the polymer relaxation time scale and α is the mo-
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Figure 1. Rheology of the different fluid models for increasing Weissenberg numbers; from left to right panel (a) Wi = 1, panel (b)
Wi = 10 and panel (c) Wi = 100.

bility parameter of the Giesekus fluid (equal to zero for the
Oldroyd-B fluid model).
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The upper-convected derivative,
∇
τ , is defined as follows.

∇
τ =

∂τ

∂ t
+u ·∇τ −

(
∇uT · τ + τ ·∇u

)
(4)

We solve the extra-stress transport equation only for the
Giesekus and Oldroyd-B fluid models. The Carreau fluid, on
the other hand, does not include any polymer-induced extra-
stresses; the solvent viscosity ηs however depends on the local
shear rate, γ̇ , as reported in equation 5.

ηs = η∞ +(η0 −η∞)
[
1+(λ γ̇)2

] n−1
2 (5)

Here the viscosities at zero shear rate and at infinite shear rate
are respectively η0 and η∞. For the Carreau fluid the parameter
λ is the fluid consistency index and carries no information on
flow elasticity. However, in the sake of simplicity, we will
still refer to the ratio of the fluid consistency index over a flow
time-scale as the Weissenberg number. Lastly, the power-law
index, n, defines whether the fluid is shear-thickening (n > 1)
or shear-thinning (n < 1). In this work we consider a shear-
thinning fluid, with power-law index n = 0.2.

A common issue that arises when solving the transport
equation for the extra-stress tensor, equation 3, is the high-
Weissenberg number problem (Keunings, 1986), which leads
to the unphysical loss of positive-definiteness of the conforma-
tion tensor. This issue occurs at large Weissenberg numbers
and manifests as disturbances amplifying over time in the con-
formation tensor (Dupret & Marchal, 1986; Min et al., 2001;
Sureshkumar & Beris, 1995). Different solutions have been
suggested to address the high-Weissenberg number problem:

artificial diffusivity can be added to the equation to damp the
disturbances (Alves et al., 2000; Mompean & Deville, 1997).
This however reduces the accuracy of the calculations (Du-
bief et al., 2005). We opt instead for the matrix-logarithm
formulation of the transport equation of the non-Newtonian
extra-stress (Fattal & Kupferman, 2004; Hulsen et al., 2005);
this methodology, while being computationally expensive, as
it requires solving an eigenvalues/eigenvectors problem on the
conformation tensor, is however exact.

The equations are discretized on a staggered, uniform,
Cartesian grid; velocity data is stored at the cell faces, while
all other variables at the cell center. A second-order finite
difference scheme is used to approximate spatial derivative;
for the advection term of the extra-stress transport equation
a fifth-order WENO scheme is instead adopted (Shu, 2009;
Sugiyama et al., 2011). The equations are discretized in time
with a second-order, explicit Adams-Bashforth scheme. Time
advancement is performed via a fractional-step method (Kim
& Moin, 1985), coupled with a fast pressure solver (Dodd &
Ferrante, 2014) for the Poisson equation for the pressure.

All simulations have been performed using the in-house
code Fujin, which has been extensively used and validated
in the past (Brizzolara et al., 2021; Mazzino & Rosti, 2021;
Olivieri et al., 2020; Rosti et al., 2021a,b; Rosti & Brandt,
2020; Rosti et al., 2019, 2020). Additional validation tests are
available at https://groups.oist.jp/cffu/code.

To investigate non-Newtonian effects on the dynamic of
a planar jet we perform numerical simulations of three differ-
ent non-Newtonian fluid models, namely Carreau, Giesekus
and Oldroyd-B. This way the effects of shear-thinning, fluid
elasticity and of their combined effect can be sorted out. The
rheology of the different fluid models is reported in figure 1
for all the simulated Weissenberg numbers. The Reynolds
number, computed using the inlet velocity vin, the half-height
of the slit through which the fluid is issued h and the zero-
shear viscosity, is Re = 20. An additional, reference simula-
tion of a Newtonian fluid is also performed; at this value of
the Reynolds number we observe a laminar flowing regime for
this latter case. We perform two-dimensional simulation at low
Weissenberg number in a domain of size 160h×240h (stream-
wise × jet-normal directions) discretized with 1536 × 2304
grid points. The simulations at the highest Weissenberg num-
ber are performed on a three-dimensional domain of size
160h× 240h× 13.3h (stream-wise × jet-normal × span-wise
directions), discretized using 1536× 2304× 128 grid points.
In the following the x coordinate denotes the span-wise direc-
tion, y the stream-wise direction and z the jet-normal direction.

The jet is issued from a slit of height 2h on the left side
of the domain into a pool of the same fluid at rest. No-slip and
no-flux boundary conditions are applied at the left boundary,
except at the slit through which the fluid is issued. Free-slip
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Figure 2. Stream-wise fluid velocity v at steady-state conditions. The Newtonian reference case is reported in panel (a) on the full
domain; the red box highlights the region of the domain that is shown in the panels (b)-(j). Each column refers to a different fluid
model, Carreau in panels (b), (e), (h), Giesekus in panels (c), (f), (i) and Oldroyd-B in panels (d), (g), (j). Each row correspond to a
different Weissenberg number: from top to bottom Wi = 1 in panels (b)-(d), Wi = 10 in panels (e)-(g) and Wi = 100 in panels (h)-(j).

boundary conditions are imposed at the top and bottom bound-
aries. A non-reflective boundary condition (Orlanski, 1976) is
enforced at the outlet section, right boundary.

RESULTS
The stream-wise velocity for all simulated cases is re-

ported in figure 2. It can be immediately noticed the effect
of the Weissenberg number, increasing from the top to the
bottom row, and of the fluid model. Only a portion of the
domain is reported in panels (b)-(j), bounded by the red box
in panel (a). At low Weissenberg number, top row, the non-
Newtonian contribution is weak and all cases exhibit a laminar
flowing regime. As will be quantitatively shown in the follow-
ing, no appreciable difference is seen among the various cases.
As the Weissenberg number is increased to Wi = 10, middle
row, the onset of an instability can be seen for the Oldroyd-B
model; at this intermediate Weissenberg number fluid elastic-
ity starts playing a dominant role over viscous contributions.
For the Carreau fluid model, the effect of shear-thinning is
still too weak to trigger any flow instability; similarly for the
Giesekus fluid model. The laminar flowing regime displayed
by the Giesekus fluid at this value of the Weissenberg num-
ber hints that while viscoelasticity promotes the transition to a
turbulent-like regime, shear-thinning, competing against fluid
elasticity, hinders or at least delays such transition. As we
move to the highest Weissenberg number, Wi = 100, we can
immediately notice a striking difference among the three non-
Newtonian fluid models: while all cases are characterized by
disordered, turbulent-like fluid motions, the flowing pattern is
very different. Indeed, the mechanisms generating these disor-
dered fluid motions are different: for the Carreau fluid (shear-
thinning) it is the competition between inertial and viscous
contributions, for the Giesekus fluid (shear-thinning and vis-
coelastic) by the competing effect of inertial, elastic and vis-
cous contributions, while for the Oldroyd-B (viscoelastic) by
the competition of fluid elasticity and viscous terms.

The flow visualization, figure 2, clearly shows important
differences among the various fluid models, in particular at
higher Weissenberg numbers, where the contribution from the
non-Newtonian component is stronger. The Carreau fluid, be-
ing a shear-thinning fluid, exhibits turbulence motions more
similar to classical, Newtonian turbulence as the local viscos-
ity is decreased. The Giesekus fluid has a very similar rhe-

ological curve to the Carreau fluid, however fluid elasticity
plays an important role as well. The lower value of the local
viscosity leads to an increase of the local Reynolds number,
thus justifying the transition to a turbulent-like regime. On the
contrary, the viscosity of the Oldroyd-B fluid is constant, thus
the disordered fluid motions we observe can be traced back
to the fluid elasticity alone. Despite the very different flow-
ing regime and rheological curves of the various fluid models,
it is interesting to note that the bulk statistics still obey the
power-law scalings computed for planar jets of a Newtonian
fluid in both laminar and turbulent regime. This result may be
unexpected at first, however no assumption on the actual fluid
model is made in the derivation of these scaling laws (Parvar
et al., 2020; Guimarães et al., 2020). Figures 3 and 4 report re-
spectively the decay of the centerline velocity and the increase
in the jet thickness along the stream-wise direction. The jet
thickness, δ0.5, is here defined as the distance from the jet cen-
terline at which the time- and space-averaged velocity equals
half the centerline velocity at the same stream-wise location.
At the lowest Weissenberg number, Wi = 1, non-Newtonian
effects are weak and viscous contributions dominate the flow.
The qualitative visualization shows no difference between the
Newtonian reference case and the three non-Newtonian fluid
models. This finding is confirmed also by the bulk statistics:
the centerline velocity, figure 3(a), and the jet thickness, fig-
ure 4, fall on top of each other for all cases, following the
laminar power-law scalings, vc ∝ y−1/3 and δ0.5 ∝ y2/3.

As the Weissenberg number is increased to Wi = 10
(intermediate Weissenberg number), effects from the non-
Newtonian component, namely shear-thinning, fluid elastic-
ity or both combined, become stronger. For the Carreau fluid
the reduction in the local viscosity is not sufficient to desta-
bilize the flow and transition to a turbulent-like regime: fur-
ther away from the inlet the laminar scalings are recovered for
both the centerline velocity and the jet thickness. It is interest-
ing to note that memory of the inlet conditions is carried over
a longer stream-wise distance: while for the Newtonian case
the laminar solution is recovered from about y = 5, for the
non-Newtonian cases transition towards the power-law scal-
ings occurs further away once the non-Newtonian contribution
becomes dominant. Similarly, the Giesekus fluid follows the
laminar power-law scalings for both the centerline velocity and
the jet thickness at this intermediate Weissenberg number. On
the contrary, the Oldroyd-B fluid shows an initial turbulent-
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Figure 3. Centerline velocity for different Weissenberg numbers, panel (a) Wi = 1, panel (b) Wi = 10 and panel (c) Wi = 100.
The analytic power-law scaling are reported with a dashed line (laminar scaling, vc ∝ y−1/3) and dash-dotted line(turbulent scaling,
vc ∝ y−1/2).
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Figure 4. Jet thickness for different Weissenberg numbers, panel (a) Wi = 1, panel (b) Wi = 10 and panel (c) Wi = 100. The analytic
power-law scaling are reported with a dashed line (laminar scaling, δ0.5 ∝ y2/3) and dash-dotted line(turbulent scaling, δ0.5 ∝ y).

like flowing regime closer to the inlet, at 10 < y < 40, fol-
lowed by a transition towards a laminar scaling beyond y = 40.
We computed the Deborah number (ratio of the polymer time
scale over a local flow time scale, not shown here) using local
quantities: the relaxation time of the polymer, λ , and the local
flow time scale δ0.5/vc. The value of the Deborah number is
larger than one up to y = 40 and then reduces below one be-
yond this stream-wise location. This indicates that fluid elas-
ticity is predominant up to roughly y = 40 (Deborah number
larger than one), then viscous contributions become dominant
(Deborah number lower than one) and the flow transitions to a
laminar-like regime. These different flowing regimes can also
be seen in figure 2(g) where the initial disordered fluid mo-
tions are dissipated roughly beyond y = 40. This result hints
at a competition between shear-thinning and fluid elasticity:
at the intermediate Weissenberg number, the Oldroyd-B fluid
shows an initial transition towards a turbulent regime, while
the Giesekus fluid model does not exhibit any flow instability,
suggesting that shear-thinning hinders, or at least delays, the
transition to a turbulent-like regime.

Lastly, at the highest Weissenberg number all fluid models
exhibit a turbulent-like flowing regime. Although the flowing
pattern is qualitatively different among the various fluid mod-
els, the same power-law scalings for Newtonian turbulent pla-
nar jets is recovered for all fluid models. For the Carreau fluid
the local viscosity is lower, as indicated in figure 1(c), thus re-
ducing the contribution of the viscous terms and leading to a
higher local Reynolds number. Transition to turbulence is then
promoted by the predominance of inertial over viscous terms.
Further away from the inlet the shear rate is lower, thus leading
to a higher value of the local viscosity; turbulent motions are
then dissipated. The Giesekus fluid, having a similar rheolog-
ical curve to the Carreau fluid, experiences a similar reduction
in the value of the local viscosity. In addition, the polymers
within the fluid are more stretched, as indicated by the con-
formation tensor. The combined effect of these two factors

destabilizes the flow and originates a turbulent-like flow. Fluid
elasticity is instead the only factor promoting flow destabiliza-
tion in the Oldroyd-B fluid: the stretching and retracting of the
polymers induce disordered fluid motions; despite the pathway
to this turbulent-like regime being very different from that of
Newtonian turbulence, we observe that the centerline velocity
and jet thickness still obey the computed power-law scalings
for a Newtonian turbulent planar jet.

We then proceed to quantitatively characterize the differ-
ent flowing patterns we observed at the highest Weissenberg
number. We compute the turbulent kinetic energy spectra for
the three fluid models at Wi = 100; we record velocity data
over time at a fixed stream-wise location, y= 40, at the jet cen-
terline and compute the spectra in time. Several authors have
observed scaling exponents within the inertial range different
from that characteristic of the Newtonian turbulent energy cas-
cade, χ = −5/3 (Balkovsky et al., 2001; Fouxon & Lebedev,
2003; Perlekar et al., 2010; Vonlanthen & Monkewitz, 2013;
Zhang et al., 2021). While most of these studies agree on a
steeper decay law, there is yet no general consensus on the ac-
tual value of the scaling exponent, with theoretical predictions
by Balkovsky et al. (2001) and Fouxon & Lebedev (2003)
finding a value for the exponent χ ≤ −3 and experimental
measurements by Vonlanthen & Monkewitz (2013) reporting
a power-law exponent χ =−3. Figure 5 reports the computed
turbulent kinetic energy power spectra for all fluid models at
the highest Weissenberg number. The Carreau fluid follows
a clear χ = −5/3 power law exponent in the inertial range:
the turbulent fluid motion observed is indeed akin to classi-
cal Newtonian turbulence, being originated by the predomi-
nance of inertial over viscous contributions. The Giesekus and
Oldroyd-B fluids instead show a marked χ = −3 power law
exponent; both fluid models are characterized by fluid elastic-
ity, and shear-thinning for the Giesekus fluid alone. The mea-
sured scaling exponent well agrees with the measurements by
Vonlanthen & Monkewitz (2013); it is also interesting to note
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Figure 5. Turbulent kinetic energy spectra for the three non-
Newtonian fluid models at the highest Weissenberg number,
Wi = 100. Velocity data are collected over time at the jet cen-
terline at y = 40. The data for the Carreau fluid is shifted up-
wards for improved readability.

that despite the local Reynolds number for the Giesekus fluid
is large enough for Newtonian turbulence to be generated, we
do not observe a χ =−5/3 scaling in the inertial regime, sug-
gesting that the contribution from fluid elasticity prevails over
inertial terms.

CONCLUSIONS
We performed numerical simulations of a planar jet at low

Reynolds number using different non-Newtonian fluid models
characterized by shear-thinning (Carreau), shear-thinning and
viscoelasticity (Giesekus) and viscoelasticity alone (Oldroyd-
B). We changed the strength of the non-Newtonian contri-
bution via a dimensionless parameter, the Weissenberg num-
ber, defined as the ratio of the polymer relaxation time scale
(or the fluid consistency index for the shear-thinning Carreau
fluid) over the flow time scale. For increasing values of the
Weissenberg number we observe that the flow, initially lam-
inar, transitions to a turbulent-like regime. Flow visualiza-
tion at steady-state conditions shows that the flowing regimes
are substantially different among the various fluid models:
for the Carreau fluid turbulence is a result of the competi-
tion between inertial and viscous terms, for the Giesekus fluid
it is among inertial, elastic and viscous terms, while for the
Oldroyd-B fluid it between elastic and viscous terms. This
difference is also clear from the power spectra of the turbulent
kinetic energy: the Carreau fluid shows the same inertial-range
power law exponent χ =−5/3 as Newtonian turbulence, while
the Giesekus and Oldroyd-B fluid models follow a χ = −3
power law decay in agreement with Vonlanthen & Monkewitz
(2013). It is interesting to note that despite the different flow-
ing regimes and energy spectra observed, the bulk statistics,
namely the centerline velocity and jet thickness, still follow
the same power-law scalings derived for Newtonian planar jets
in both laminar and turbulent conditions. While this may seem
a surprising result at first, it is not so unexpected as no as-
sumption on the actual fluid model is taken in the derivation
of these scalings. Indeed at low Weissenberg numbers we ob-
serve a laminar-like flow, which turns unstable and transitions
to turbulence as the Weissenberg number is increased; here
the key parameter determining the transition to a turbulent-

like flowing regime is the Weissenberg number, rather than
the Reynolds number, as it quantifies the strength of non-
Newtonian effects. We note that viscoelasticity alone seems
to promote the transition to a turbulent-like regime, with the
Oldroyd-B fluid showing turbulent motion already at the inter-
mediate Weissenberg number, while shear-thinning seems to
hinder the action of fluid elasticity, as suggested by the laminar
flowing regime of the Giesekus fluid at the same Weissenberg
number.

REFERENCES
Alves, MA, Pinho, FT & Oliveira, PJ 2000 Effect of a high-

resolution differencing scheme on finite-volume predictions
of viscoelastic flows. J. Non-Newtonian Fluid Mech. 93 (2-
3), 287–314.

Balkovsky, E, Fouxon, A & Lebedev, V 2001 Turbulence of
polymer solutions. Physical Review E 64 (5), 056301.

Brizzolara, Stefano, Rosti, Marco Edoardo, Olivieri, Stefano,
Brandt, Luca, Holzner, Markus & Mazzino, Andrea 2021
Fiber tracking velocimetry for two-point statistics of turbu-
lence. Phys. Rev. X 11 (3), 031060.

De, Shauvik, Kuipers, JAM, Peters, EAJF & Padding, JT 2017
Viscoelastic flow simulations in random porous media. J.
Non-Newtonian Fluid Mech. 248, 50–61.

Dodd, Michael S & Ferrante, Antonino 2014 A fast pressure-
correction method for incompressible two-fluid flows. J.
Computat. Phys. 273, 416–434.

Dubief, Yves, Terrapon, Vincent E, White, Christopher M,
Shaqfeh, Eric SG, Moin, Parviz & Lele, Sanjiva K 2005
New answers on the interaction between polymers and vor-
tices in turbulent flows. Flow Turbul. Combust. 74 (4), 311–
329.

Dupret, François & Marchal, JM 1986 Loss of evolution in the
flow of viscoelastic fluids. J. Non-Newtonian Fluid Mech.
20, 143–171.

Fattal, Raanan & Kupferman, Raz 2004 Constitutive laws for
the matrix-logarithm of the conformation tensor. J. Non-
Newtonian Fluid Mech. 123 (2-3), 281–285.

Fouxon, A & Lebedev, V 2003 Spectra of turbulence in dilute
polymer solutions. Physics of Fluids 15 (7), 2060–2072.

Grilli, Muzio, Vázquez-Quesada, Adolfo & Ellero, Marco
2013 Transition to turbulence and mixing in a viscoelas-
tic fluid flowing inside a channel with a periodic array of
cylindrical obstacles. Phys. Rev. Lett. 110 (17), 174501.

Guimarães, Mateus C, Pimentel, Nuno, Pinho, Fernando T &
da Silva, Carlos B 2020 Direct numerical simulations of tur-
bulent viscoelastic jets. J. Fluid Mech. 899.

Hulsen, Martien A, Fattal, Raanan & Kupferman, Raz 2005
Flow of viscoelastic fluids past a cylinder at high weis-
senberg number: stabilized simulations using matrix log-
arithms. J. Non-Newtonian Fluid Mech. 127 (1), 27–39.

Joo, Yong Lak & Shaqfeh, Eric SG 1992 A purely elastic in-
stability in dean and taylor–dean flow. Phys. Fluids 4 (3),
524–543.

Joo, Yong Lak & Shaqfeh, Eric SG 1994 Observations of
purely elastic instabilities in the taylor–dean flow of a boger
fluid. J. Fluid Mech. 262, 27–73.

Keunings, Roland 1986 On the high weissenberg number
problem. J. Non-Newtonian Fluid Mech. 20, 209–226.

Khalid, Mohammad, Shankar, V & Subramanian, Ganesh
2021 Continuous pathway between the elasto-inertial and
elastic turbulent states in viscoelastic channel flow. Phys.
Rev. Lett. 127 (13), 134502.

Kim, John & Moin, Parviz 1985 Application of a fractional-

5



12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan (Online), July 19-22, 2022

step method to incompressible navier-stokes equations. J.
Computat. Phys. 59 (2), 308–323.

Kumar, Manish, Aramideh, Soroush, Browne, Christopher A,
Datta, Sujit S & Ardekani, Arezoo M 2021 Numerical in-
vestigation of multistability in the unstable flow of a poly-
mer solution through porous media. Phys. Rev. Fluids 6 (3),
033304.

Mazzino, Andrea & Rosti, Marco Edoardo 2021 Unraveling
the secrets of turbulence in a fluid puff. Phys. Rev. Lett.
127 (9), 094501.

Min, Taegee, Yoo, Jung Yul & Choi, Haecheon 2001 Effect of
spatial discretization schemes on numerical solutions of vis-
coelastic fluid flows. J. Non-Newtonian Fluid Mech. 100 (1-
3), 27–47.

Mompean, Gilmar & Deville, Michel 1997 Unsteady finite
volume simulation of oldroyd-b fluid through a three-
dimensional planar contraction. J. Non-Newtonian Fluid
Mech. 72 (2-3), 253–279.

Olivieri, Stefano, Brandt, Luca, Rosti, Marco E & Mazzino,
Andrea 2020 Dispersed fibers change the classical energy
budget of turbulence via nonlocal transfer. Phys. Rev. Lett.
125 (11), 114501.

Orlanski, I. 1976 A simple boundary condition for unbounded
hyperbolic flows. J. Comput. Phys. 21 (3), 251–269.

Parvar, S, da Silva, CB & Pinho, FT 2020 Local similarity
solution for steady laminar planar jet flow of viscoelastic
fene-p fluids. J. Non-Newtonian Fluid Mech. 279, 104265.

Perlekar, Prasad, Mitra, Dhrubaditya & Pandit, Rahul 2010
Direct numerical simulations of statistically steady, homo-
geneous, isotropic fluid turbulence with polymer additives.
Physical Review E 82 (6), 066313.

Rosti, M.E., Ge, Z., Jain, S.S., Dodd, M.S. & Brandt, L. 2019
Droplets in homogeneous shear turbulence. J. Fluid Mech.
876, 962–984.

Rosti, ME, Olivieri, S, Cavaiola, M, Seminara, A & Mazzino,
A 2020 Fluid dynamics of covid-19 airborne infection sug-
gests urgent data for a scientific design of social distancing.

Scientific reports 10 (1), 1–9.
Rosti, Marco Edoardo & Brandt, Luca 2020 Increase of tur-

bulent drag by polymers in particle suspensions. Phys. Rev.
Fluids 5 (4), 041301.

Rosti, Marco E, Cavaiola, Mattia, Olivieri, Stefano, Semi-
nara, Agnese & Mazzino, Andrea 2021a Turbulence role
in the fate of virus-containing droplets in violent expiratory
events. Phys. Rev. Res. 3 (1), 013091.

Rosti, Marco E, Perlekar, Prasad & Mitra, Dhrubaditya 2021b
Large is different: non-monotonic behaviour of elastic
range scaling in polymeric turbulence at large reynolds and
deborah numbers. arXiv preprint arXiv:2111.11224 .

Shu, Chi-Wang 2009 High order weighted essentially
nonoscillatory schemes for convection dominated prob-
lems. SIAM review 51 (1), 82–126.

Sugiyama, Kazuyasu, Ii, Satoshi, Takeuchi, Shintaro, Takagi,
Shu & Matsumoto, Yoichiro 2011 A full eulerian finite dif-
ference approach for solving fluid–structure coupling prob-
lems. J. Computat. Phys. 230 (3), 596–627.

Sureshkumar, R & Beris, Antony N 1995 Effect of artificial
stress diffusivity on the stability of numerical calculations
and the flow dynamics of time-dependent viscoelastic flows.
J. Non-Newtonian Fluid Mech. 60 (1), 53–80.

Vonlanthen, Richard & Monkewitz, Peter A 2013 Grid turbu-
lence in dilute polymer solutions: Peo in water. Journal of
Fluid Mechanics 730, 76–98.

Walkama, Derek M, Waisbord, Nicolas & Guasto, Jeffrey S
2020 Disorder suppresses chaos in viscoelastic flows. Phys.
Rev. Lett. 124 (16), 164501.

Yamani, Sami, Keshavarz, Bavand, Raj, Yashasvi, Zaki,
Tamer A, McKinley, Gareth H & Bischofberger, Irm-
gard 2021 Spectral universality of elastoinertial turbulence.
Phys. Rev. Lett. 127 (7), 074501.

Zhang, Yi-Bao, Bodenschatz, Eberhard, Xu, Haitao & Xi,
Heng-Dong 2021 Experimental observation of the elastic
range scaling in turbulent flow with polymer additives. Sci-
ence Advances 7 (14), eabd3525.

6


