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ABSTRACT
In many practical fluid dynamics experiments, measuring

variables such as velocity and pressure is possible only at a
limited number of sensor locations. However, knowledge of
the full fields is necessary to understand the dynamics of many
flows. Deep learning reconstruction of full flow fields from
sparse measurements as a way of overcoming this limitation
has recently garnered significant research interest, referred to
as the flow reconstruction (FR) task.

We extend existing FR models by enabling such models
to make predictions on flows around arbitrary 2D geometries
without the need for re-training. This geometry flexibility is
achieved through an innovative mapping approach, whereby
multiple fluid domains are mapped to an annulus.

Using this mapping approach, we explore the perfor-
mance of a novel FR model trained on 64 geometries and
tested on a further 16 different geometries. We demonstrate
that the model trained using the mapping approach recon-
structs the flow fields well even on geometries not present in
the training data.

INTRODUCTION
Flow reconstruction (FR) involves the prediction of dense

fields such as velocity based on sparse measurements. Though
the usage of various statistical methods for this purpose has
a long history in works such as Bonnet et al. (1994); Calla-
ham et al. (2019). Recent advancements in deep learning (DL)
rekindled an interest in flow reconstruction as seen in recent
works such as Erichson et al. (2020); Dubois et al. (2022).

One drawback even in the recent DL based approaches is
the necessity to train on the same geometry on which inference
is to be performed. This inhibits the usefulness of FR models
in practical scenarios, for instance in physical wind tunnel test-
ing driven shape optimization. Overcoming this requires FR
models that are capable of handling arbitrary geometries. Aug-
menting the training dataset with different geometries is not a
solution for existing models such as the Shallow Decoder (SD)
by Erichson et al. (2020), as our experimentation revealed that
training the SD on a dataset with different geometries leads
to a model that erroneously predicts fields that are averaged
across all geometries in the dataset.

Sidestepping this issue is possible by representing the
flow field in a way that removes the necessity to predict the
physical geometry of the object in the fluid flow. However,

Figure 1: A random geometry (left) and its preimage in
the w domain (right). Blue and green contours depict the
norm and argument in the w domain, respectively.

only one work in previous literature investigates this avenue;
Chen et al. (2021) used graph convolutional neural networks
(GCNNs) to reconstruct laminar, steady pressure and velocity
fields around random geometries at a low Reynolds number
(Re = 10). An alternate to GCNNs is the usage of a mapping,
ensuring all geometries are mapped to a single shape. In 2D,
this can be achieved through a Schwarz-Christoffel (S-C) con-
formal mapping; each k-connected region can be mapped to a
disc with k holes, as explored by Crowdy (2020).

In this work, we explore doubly connected S-C mappings
to generate datasets for training of FR models on large num-
bers of geometries, targeting reconstruction in space and time.
Figure 1 depicts an example mapping for a geometry used in
this study. Using this approach, we extend the capabilities
demonstrated by Chen et al. (2021), investigating unsteady re-
construction at a much higher Reynolds number Re = 300.

As a further remark, for readers who are interested in the
mapping strategy, our previous paper on the subject (Özbay &
Laizet (2022)) covers the subject in greater detail. The present
work builds upon the results in the results in the previous pa-
per, extending them by adding an investigation of lift and drag
prediction.

DATA AND EXPERIMENTAL SETUP
Our dataset consists of 80 geometries Gi, i ∈ [0,79], ran-

domly generated using Bezier curves using the code provided
by Viquerat et al. (2021). The control points of the Bezier
curves were chosen randomly in a square domain with charac-
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teristic length Lm. Each geometry was placed in the center of
a 40Lm/3× 40Lm/3 square domain, on the edges of which a
uniform (u,v) = (1.0,0.0) velocity Dirichlet BC was imposed.
The flow around each Gi was computed at Re = uLm/ν =
300 with the PyFR solver by Witherden et al. (2014). 600
snapshots between times τ∗ = 3.333 and τ∗ = 23.333 were
recorded per geometry, where τ∗ = uτ/Lm and τ is the physi-
cal time.

Subsequently, denoting the fluid domain around each Gi
as Fi, the forward mappings fi and inverse mappings gi be-
tween annuli Ai and original domains Fi were computed using
a set of Python bindings written for a modified version of the
DSCPACK code by Hu (1998). Each Ai has an outer radius of
1.0 and a geometry-specific inner radius ri. This process maps
the boundary of the geometry Gi to the inner ring of the annu-
lus, while the outer boundary of the domain Fi is mapped to
the outer ring.

Using w and z to refer to complex coordinates in Ai and
Fi respectively, 64× 256 grid points, equispaced in the radial
and angular directions respectively, with coordinates wA,i were
mapped to the original domains to obtain zA,i = f (wA,i). The
velocity fields ut,i,vt,i for snapshots t ∈ [0,600] of each Gi
were used to obtain vorticity fields ωt,i. Finally, ut,i,vt,i,ωt,i
plus the pressure fields pt,i were interpolated to zA,i to obtain
ũt,i, ṽt,i, ω̃t,i and p̃t,i, which constitute the target values of our
’Annular Sampling’ dataset. This strategy is compared against
a ’Cartesian Sampling’ dataset, composed of ground truth val-
ues interpolated to a regular 128× 128 Cartesian grid within
the domain.

The corresponding inputs are vectors st,i of sparse pres-
sure and velocity measurements. The former are placed on
object surfaces and the latter are arranged in a grid behind
the objects. Based on this general template, two setups with
varying sensor quantities were considered; a large setup with
50 pressure and 25 velocity (50P+25V) sensors, and a small
12P+4V setup.

Two classes of experiments were conducted using this
dataset; spatial multi-geometry flow reconstruction (SMGFR)
whereby the model is expected to reconstruct a target field
·̃t,i given si,t , and spatiotemporal MGFR (STMGFR) which is
similar to SMGFR the target field is k timesteps in the future
relative to the sensor input - e.g. reconstruct ·̃t+k,i given st,i.

MODEL ARCHITECTURE AND TRAINING
For spatial reconstruction, the performance of four archi-

tectures was evaluated:

1. Shallow Decoder (SD): A 3 layer multilayer perceptron
(MLP) with 40 units and ReLU activations in the interme-
diate layers, as used in Erichson et al. (2020).

2. SD-Large: A larger SD with 4 layers, 2048 units in each
layer, leaky ReLU activations and batch normalization.

3. SD-UNet: SD model with 512 and 2048 units in the inter-
mediate layers, followed by a reshape operation to a 2D
grid and a U-Net (Ronneberger et al. (2015)) model.

4. SD-FNO: An SD model identical to the one in the SD-
UNet, followed by four FNO (Li et al. (2020)) layers.

In addition, the training of a further FNO model was ex-
plored, using the predictions of the above four spatial models
as inputs and ground truth snapshots k = 0,k = 20 and k = 80
timesteps in the future relative to the inputs as the targets. In
the k = 0 configuration, this FNO model serves as a denoising
autoencoder. The k = 20 and k = 80 configurations explore
time-marching the full fields into the future, enabling spatio-

temporal flow reconstruction from sparse sensors, when used
in conjunction with the spatial model.

All models were implemented using Tensorflow (Abadi
et al. (2016)). Training was conducted using the Adam opti-
mizer by Kingma & Ba (2017) with an initial learning rate of
10−3. The learning rate was dynamically tapered as validation
loss plateaued. Number of training epochs was determined us-
ing the early stopping approach based on validation loss levels.

RESULTS
Below, we present the results from a series of SMGFR

and STMGFR experiments. First, we begin with the investiga-
tion of spatial pressure and velocity reconstruction, and sub-
sequently present results for instantaneous drag and lift coef-
ficient estimation using the reconstructed fields. Next, we fo-
cus on reconstruction of vorticity both in space and time, and
statistically demonstrate that the prediction of vorticity in our
setting presents a substantially greater challenge than the pre-
diction of velocity and pressure.

Spatial pressure and velocity reconstruction
We start with the investigation of spatial pressure and ve-

locity reconstruction, to directly compare the quality of our
reconstruction methodology with the results by Chen et al.
(2021). For the sake of brevity, only the results using the SD-
UNet spatial model coupled with the FNO-based denoising au-
toencoder are presented in this section, using the large sensor
setup. Table 1 shows absolute and percentage validation er-
ror levels, averaged over the validation snapshots. Figure 2
depicts the ground truth and predicted fields for a random val-
idation snapshot from the annular sampling dataset, alongside
the corresponding percentage error field. Highest percentage
errors are concentrated near the zero ground truth contours of
each field, despite the absence of high concentrations of abso-
lute errors near these areas, as the denominator in the percent-
age error calculation approaches zero, as further discussed in
Özbay & Laizet (2022).

Table 1: Mean absolute error (MAE) and mean abso-
lute percentage error (MAPE) levels for pressure and
velocity SMGFR experiments. MAPE figures were fil-
tered to exclude grid points exhibiting percentage errors
above 200% since such high levels of percentage error
are almost exclusively caused by ground truth values ap-
proaching zero, as seen in Figure 2.

Annular sampling Cartesian sampling

MAE MAPE MAE MAPE

p 0.0118 2.43% 0.0133 3.32%

u 0.0264 8.26% 0.0332 11.56%

v 0.0122 9.40% 0.0164 15.61%

The error levels clearly display that annular sampling is
capable of substantially improving the quality of reconstruc-
tions, bringing error levels below 3% and 10% for pressure
and velocity respectively, and reducing absolute error levels
by up to 25% in the case of v-velocity.
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Figure 2: Ground truth (left), predicted (middle) and percentage error (right) plots for pressure (top), u-velocity (middle)
and v-velocity (bottom) reconstruction for a validation snapshot.

Lift and drag coefficient estimation Recon-
structions of pressure and velocity, when used together, can
be utilized to estimate the instantaneous lift and drag coeffi-
cients. To achieve this, we adopt a strategy on the computation
of body forces. Table 2 compares the errors in lift and drag
coefficient derived from the Annular and Cartesian sampling
methods relative to those obtained from ground truth data. Fig-
ure 3 depicts the time evolution of predicted and ground truth
lift and drag coefficients for a validation geometry when using
annulus sampling.

Table 2: Mean absolute error (MAE) and mean absolute
percentage error (MAPE) levels for pressure and veloc-
ity SMGFR experiments

Annular sampling Cartesian sampling

MAE MAPE MAE MAPE

CL 0.0253 4.97% 0.0966 28.18%

CD 0.0214 8.57% 0.0684 29.67%

Unlike the Cartesian sampling method, the annular sam-
pling method allows for the computation of the forces without

the need for interpolation. This enables the estimation of lift
and drag with an accuracy level comparable to the results by
Chen et al. (2021), who reported percentage errors on the order
of 3-4%. The similar levels of performance with our method
is despite the order-of-magnitude larger Reynolds number and
the presence of unsteady flow in the present study.

Spatial vorticity reconstruction
To push the boundaries in multi-geometry flow recon-

struction, in addition to the pressure and velocity results in
the previous chapter, we detail the results of vorticity-based
SMGFR tasks. Reconstruction of vorticity from pressure and
velocity sensors presents a substantially greater challenge, as
the reconstruction relationship relating pressure and velocity
sensors to vorticity is more difficult to model, as explored fur-
ther on. This creates larger differences between the best and
worst performing configurations, and paints a clearer picture
regarding the effect of the three variables controlled for in
our study: sensor setups, model architectures and sampling
strategies. Table 3 summarizes the percentage errors from
the SMGFR investigations with all configurations. In this ta-
ble, in addition to the standard mean absolute percentage error
(MAPE), we further provide the high vorticity MAPE (HVM)
metric, which is MAPE filtered such that grid points which
correspond to ground truth vorticity values with magnitudes
below 1% of the maximum vorticity in each snapshot are re-
moved. This metric better represents the models’ performance
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Figure 3: Time evolution of the predicted and ground
truth lift (top) and drag (bottom) coefficients for a vali-
dation geometry.

in regions of interest within the flow, where the vortex shed-
ding dynamics are observed.

The results show a clear trend regarding the relative im-
portance of the three experimental variables; the sampling
strategy permits the improvements in performance, providing
an accuracy benefit exceeding 15 percentage points in the case
of the SD model with the large sensor setup. Relative to this,
the improvements afforded by the choice of model architec-
ture and sensor setup are modest. The best overall-performing
configuration is the SD-UNet coupled with annular sampling
and the large sensor setup. Figure 4 depicts vorticity pre-
dictions with this configuration; as also covered in Özbay &
Laizet (2022), our method correctly replicates flow features of
interest such as the intensity and placement of shed vortices
and concentrations of vorticity in boundary layers, while con-
centrations of high percentage error are once again observed
mostly in areas where the ground truth values approach zero.

Spatio-temporal vorticity reconstruction
Finally, we extend the results from vorticity-based

SMGFR efforts to STMGFR (reconstruction in both time and
space). The outputs from a spatial reconstruction model, cho-
sen as the SD-UNet trained on the annular dataset for display-
ing the highest performance in SMGFR, are provided as in-
puts to an FNO model which is optimized to reconstruct the
ground truth snapshots a fixed number of timesteps k in the fu-
ture relative to its input. This allows the combined SD-UNet
+ FNO system to predict snapshots in the future, given current

Table 3: Percentage error metrics from the vorticity-
based SMGFR experiments.

Large sensor setup Small sensor setup

Sampling Ann. Cart. Ann. Cart.

SD

MAPE 44.29% 59.88% 47.35% 57.40%

HVM 34.28% 46.14% 34.72% 50.89%

SD
-L

ar
ge MAPE 43.80% 57.52% 47.20% 59.77%

HVM 31.85% 53.36% 34.06% 48.59%

SD
-U

N
et MAPE 39.92% 47.64% 45.03% 51.56%

HVM 31.37% 39.88% 33.17% 44.47%

SD
-F

N
O MAPE 40.83% 46.56% 44.04% 51.81%

HVM 31.78% 39.34% 33.77% 45.81%

sensor readings. Table 4 summarizes the percentage error met-
rics obtained from this setup with varying values of the tempo-
ral gap k, while Figure 5 depicts the results obtained from the
STMGFR procedure for the same snapshot in Figure 2.

The results clearly display that our setup is capable of
predicting vorticity snapshots in the future from current sen-
sor measurements with minimal penalties incurred in terms of
accuracy.

Table 4: Percentage error metrics for the vorticity-based
STMGFR task with varying temporal gaps.

k (∆τ∗) 0 (0.0) 20 (0.667) 80 (2.667)

MAPE 28.89% 31.02% 31.88%

HVM 17.86% 17.86% 21.97%

Difficulties in predicting vorticity
Our method permits predictions of pressure and velocity

with error levels largely in line with previous literature de-
spite the greater challenge of tackling unsteady flows at much
higher Reynolds numbers. However, much higher percentage
error levels are encountered in the previously unexplored task
of vorticity reconstruction around arbitrary geometries. An in-
tuitive explanation for this is the fact that we use pressure and
velocity sensors to reconstruct a third, different target field.

To test this hypothesis, we constructed two metrics to
compare the difficulties of reconstructing pressure, u-velocity,
v-velocity and vorticity fields given the sensor inputs from
the large sensor setup. The first, D , is based on the Spear-
man rank correlation coefficient (SRCC), which quantifies the
monotonicity of the relationship between two quantities. The
second, M , is based on mutual information (MI), which com-
pares the similarity (relative entropy) of the distributions of
two random variables. The scores are computed by construct-
ing matrices containing the SRCC or MI between each sensor
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Figure 4: Ground truth (left), predicted (middle) and percentage error (right) plots for vorticity reconstructions of three
validation snapshots.

input and each grid point in the target fields, and then subse-
quently computing the Frobenius norm of this matrix. Table 5
shows both difficulty metrics for the four target fields investi-
gated in this study.

Table 5: Difficulty metrics D and M for the four target
fields investigated. Higher is easier.

Variable p u v ω

D 306.22 298.99 301.85 242.82

M 302.72 296.37 269.81 207.75

The difficulty metrics clearly support the hypothesis that
a more difficult to learn relationship exists between the sensor
inputs and vorticity compared to pressure and velocity, explan-
ing the greater error encountered in vorticity experiments.

CONCLUSION
We investigated the performance of NN architectures in-

spired by Erichson et al. (2020) on a flow reconstruction task
involving a snapshots from a large number of randomly gen-
erated geometries. We found that the performance of such

models on this task is poor, and developed an approach for
sampling the flow fields in a novel manner using Schwarz-
Christoffel mappings. Comparing the performance of mod-
els trained using this sampling method versus the traditional
Cartesian approach, we found that our method reduces valida-
tion errors substantially, enabling the reconstruction of pres-
sure, velocity and vorticity with percentage errors below 3%,
10% and 30% respectively, as detailed in Özbay & Laizet
(2022).

Subsequently, we used the mapping strategy to accurately
predict instantaneous lift and drag coefficients, achieving per-
centage errors below 5% and 10% for lift and drag estima-
tion respectively, compared to errors above 25% when using
Cartesian sampling. Finally, we extended the spatial-only re-
construction task to obtain flow fields in the future relative to
the sensor measurements, reconstructing vorticity fields in the
future with minimal error increases compared to contempora-
neous predictions.

In the future, we aim to extend this work by exploring
reconstruction in 3D with varying Reynolds numbers.
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