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ABSTRACT
We characterise the incompressible turbulence cascade in

terms of the concurrent inter-scale and inter-space exchanges
of the scale-by-scale energy, helicity and enstrophy. The gov-
erning equations for the scale-by-scale helicity and enstrophy
are derived in a similar fashion to that of the second order
velocity structure function obtained by Hill (2002). We ap-
ply these equations to both forced periodic turbulence and a
von Kármán flow, focusing on scales smaller than r = λ , Tay-
lor length scales. The well-known random sweeping effect
in the energy cascade between unsteady and non-linear trans-
port is found to extend across all quantities considered. Ad-
ditional mechanisms within the individual cascades are iden-
tified. Across cascades, the helicity cascade was found to be
decorrelated from the others at all scales.

INTRODUCTION
The instantaneous interactions between eddies that gov-

ern turbulence are highly dynamic, taking place across a broad
range of scales. The distinction between the instantaneous
interactions in the turbulence and the statistically stationary
cascade that they give rise to are a well known problem in
turbulence modelling. For example, in Large Eddy Simula-
tions (LES) the directionality of the cascade (from large scales
to small scales, or vice-versa) at any given instant may dif-
fer from that predicted by statistically stationary models (Ger-
mano et al., 1991) in which energy is transferred on aver-
age, from large, energy-containing eddies, to small, energy-
dissipating ones. Recent work by Goto & Vassilicos (2016)
and Yasuda & Vassilicos (2018) highlights how the statisti-
cally stationary viewpoint of the turbulence cascade effectively
overlooks important dynamics that underlay (and set) the sta-
tionary state itself. The present work seeks to expand upon
this viewpoint using a correlation-based analysis of cascades
of energy, helicity and enstrophy.

The core element at the heart of the turbulence cas-
cade is the rate of kinetic energy dissipation ε = 2νSi jSi j, ν

being the fluid’s kinematic viscosity and Si j the strain-rate

tensor. This quantity lies at the center of the Richardson-
Kolmogorov cascade phenomenology (Richardson, 1920; Kol-
mogorov, 1941a,b). Under the assumptions of local homo-
geneity, isotropy, and appropriate separation of scales, it bal-
ances the non-linear inter-scale energy transfer to yield the
infamous Kolmogorov’s 4/5-ths law. The dissipation ε is in-
timately linked with the enstrophy ω2 = ωiωi (where ωi =
εi jk∂/∂x juk is the vorticity vector) as well as the second in-
variant of the NS equations known as the helicity h= uiωi. It is
clear that a full characterisation of the turbulence cascade must
involve not only the kinetic energy but also quantities such as
enstrophy and helicity, as they bear relation to dissipation and
capture the presence of coherence, intermittency, parity, and
other such phenomena known to break with the classical pic-
ture of turbulence.

SCALE-SPACE FRAMEWORK
Hill (2002) derived a budget for the scale-space energy

increment δq2 = δuiδui, where δui = ui − u′i is the differ-
ence of the velocity at two independent points xk and x′k. This
budget can be obtained directly from the Navier-Stokes equa-
tions without requiring any information regarding the structure
of the flow, reducing to the Kármán-Howarth equation under
the assumptions of homogeneity, isotropy and stationarity. An
identical procedure is carried out to derive the evolution equa-
tions for the scale-space helicity δh ≡ δuiδωi and scale-space
enstrophy δω2 ≡ δωiδωi. This results in three generalised
equations capturing the instantaneous dynamics of the energy,
helicity, and enstrophy (in the absence of explicit forcing) for
incompressible turbulent flow:
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In eqs. (1) to (3) the symbol Σ indicates the two-point
sum (akin to the two-point difference δ ), angled brackets de-
note the inner product, SSS is the strain-rate tensor, p is the ratio
of pressure to (constant) density, ν is the kinematic viscosity
and ε is the viscous dissipation of the quantity in the super-
script. The gradient operator corresponds to gradients with
respect to the scale variable ri and the centroid position Xi
(Mollicone et al., 2018). The shorthand notation for the var-
ious transfers in equation 1 apply analogously to equations 2
and 3, with the exception that the generation terms of equation
3 appear in lieu of the pressure transport with the shorthand
GS = ⟨δωωωδωωωT ,ΣSSS⟩+ ⟨δωωωΣωωωT ,ΣSSS⟩.

Notice that these three budgets are similarly structured.
At is an unsteady term and represents the temporal increase
or decrease of energy/helicity/enstrophy at each instant and at
each scale. Π represents the nonlinear transfer in scale space.
It describes the transfer of energy/helicity/enstrophy from a
spherical shell at scale rk centred on Xk to either an adjacent
shell or to an adjacent location within the same shell rk +drk.
T is the nonlinear turbulent transport in physical space. It cap-
tures the transport of energy/helicity/enstrophy from a spher-
ical shell of radius rk centred at Xk to an adjacent spherical
shell at the same rk centred at Xk + dXk. Tp results from the
interaction of the pressure and velocity/vorticity fields to pro-
duce a pressure transport (similar to T ) that acts to transport
energy/helicity at a particular scale to a neighboring shell. GS
is a generation term in scale space resulting from the coupling
between the rate-of-strain and the enstrophy. Dν represents the
viscous diffusion of energy/helicity/enstrophy in scale space
and physical space. E represents the two-point average dissi-
pation rate. This can be seen, for example for the scale to scale
energy transfers, dividing equation 1 by 4 on both sides such
that E = 1

2 (ε + ε ′) where ε = ν(∂ui/∂xk)
2.

We refer to Valente & Vassilicos (2015); Gomes-
Fernandes et al. (2015); Alves Portela et al. (2017); Mollicone
et al. (2018) who give a more detailed interpretation of trans-
port, production and destruction terms, as such. Henceforth,
superscript notation is adopted to distinguish the various trans-
fers of energy (q2), helicity (h), and enstrophy (ω2).

Data Set Descriptions
The instantaneous cascades are evaluated using two data

sets of homogeneous turbulence. The first is a direct numer-
ical simulation (DNS) of homogeneous isotropic turbulence
at Taylor-microscale Reynolds number Reλ = 433 from the
Johns Hopkins Turbulence Database (JHU, Li et al., 2008).
We analyse 2560 full resolution sub-cubes from the full simu-
lation of side length 5λ . A separate analysis on time-resolved
3D-3C scanning particle image velocimetry data from the cen-
ter of a Von-Kármán mixing tank (VK) from the work of Knut-
sen et al. (2020) was also performed for comparison, for which
Reλ = 199 and 2×105 snapshots were used. The experimental
cubes of data are slightly smaller, with side lengths of approx-
imately 1.5λ .

RESULTS
Characterisation of the data sets

In order to characterise the three scale-space quantities
of interest, we first investigate the ensemble-averaged scale-
space energy δq2, helicity δh, and enstrophy δω2 structure
functions for the data sets. These are shown for the VK and
JHU data in figure 1. Upon appropriate normalisation (as in
the figure), these functions are expected to plateau in the iner-
tial range (beyond the Taylor microscale). The limited size of
the data cubes in the experimental data set prevents us from de-
tecting such a plateau, however there is close agreement with
the larger DNS cubes that do appear to plateau at r ≳ λ . Finite
Reynolds number effects must also be taken into account.

Despite the lack of explicit helical forcing in the DNS,
the scale-space helicity is non-zero for both data sets. This
is consistent with the helicity spectrum computed over a wide
range of simulations (Chen et al., 2003; Mininni et al., 2006)
with and without helical forcing (Alexakis, 2017). This can
be seen directly through an expansion of δh, i.e. for homo-
geneous turbulence (ui −u′i)(ωi −ω ′

i ) = 2h−2uiω
′
i . This ex-

pansion reveals that even when small-scale mirror symmetry
holds (h = 0) the non-zero scale space helicity (and spectrum
of helicity) arises from the coherence in the velocity-vorticity
correlation (Levich & Shtilman, 1988).

We next consider the non-linear flux (NLF) structure
functions for each of the cascades. A small departure to jus-
tify this chosen terminology will be taken here. These struc-
ture functions are commonly referred to as “third-order struc-
ture functions”, but as the origin of “third order” is in the
statistical moment of the increment of a single quantity (i.e.
δu3) a different terminology is adopted for improved general-
ity. As noted by Hill (2002), making use of Gauss’ theorem
when integrating the non-linear energy transfer term of eq. (1)
over the spherical scale space volume Vr gives

˝
Πq2

dVr =‚
∂Vr

δukδq2nkdS with nk the outward normal vector and
dS the surface of the spherical shell. The orientation aver-
age over the spherical shell is identically zero, leaving only a
flux in the radial direction. This motivates referring to these
quantities as non-linear flux (NLF) structure functions in the
present context. In addition to the central role of NLF struc-
ture functions in classical turbulence theory, i.e. the 4/5ths
(K41) and 2/15ths laws (Chkhetiani, 1996; L’vov et al., 1997),
their physical significance is well documented in the context of
a spherical scale-space coordinate system (Valente & Vassili-
cos, 2015; Gomes-Fernandes et al., 2015; Alves Portela et al.,
2017).

The orientation-averaged NLF energy structure function
is shown in fig. 2(a) normalised using the classical 4/3rds law
(a form of the 4/5ths law that avoids breaking down δq2 into
components, see Hill, 2002). The subscript “r” is used to de-
note the radial flux in the spherical coordinate system. The
plateau seen in the JHU data, for scales beyond the Taylor mi-
croscale, suggests classical behavior of δurδq2. Consistent
with fig. 1, the VK data does not show a clear plateau develop-
ing for δurδq2/ 4

3 εq2
r, but does reach a maximum value close

to one at r ≈ λ .
The orientation-averaged NLF helicity structure functions

are shown in figures 2(b) and 2(c) normalised using the prod-
uct of r and dissipation rate of helicity εh. This normalisa-
tion is chosen to compare the two distinct mechanisms associ-
ated with Πh in equation 2. The first, δukδh, originates from
the advective term and the second, δωkδq2, from the vortex
stretching term of the vorticity form of Navier-Stokes equa-
tions (Yan et al., 2019). It is again seen that, due to its non-
positive definiteness and inherently high variation, the non-
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(a) (b) (c)

Figure 1: Normalized mean energy structure function δq2 (a), helicity structure function δh (b), and enstrophy structure
function δω2 (c).

(a) (b)

(c) (d)

Figure 2: Normalised orientation-averaged NLF structure functions corresponding to the non-linear scale-to-scale flux of
energy δq2 (a), helicity δh via advection (b) and vortex stretching (c), and enstrophy δω2 (d).

linear flux of helicity is very slow to converge, leading to large
uncertainty bars. Despite this, they are found to be non-zero
and the JHU data exhibits a plateau (within large uncertainty)
for both non-linear helicity flux mechanisms.

Finally, the NLF enstrophy structure functions can be
seen in fig. 2(d) normalised using the dissipation rate of energy,
the Kolmogorov length scale η , and r. Similarly to the enstro-
phy structure function, a collapse of the data sets is observed in
the near-dissipation range between r/η = 10 and r/λ = 1. The
flux is seen to decrease as r−3 (r−2 in the figure due to com-
pensating −δurδω2 by r) into the inertial range. This power
law decrease is consistent with the results of Davidson et al.
(2008) (in their case, an alternative scale-by-scale enstrophy
flux is defined that is not motivated by the present spherical

scale-space coordinate system. This necessitates compensat-
ing −δurδω2 by r for a one-to-one comparison).

Correlations of Instantaneous Cascades
In the following we consider the correlations within the

cascades (i.e. terms of equations 1-3 individually) and be-
tween cascades (i.e. terms across equations 1-3). We focus
on the separation r = λ , the Taylor microscale, as this is the
upper bound for scales conditioned by viscosity (Yasuda &
Vassilicos, 2018; Valente & Vassilicos, 2015).

Correlations within cascades The correlations
of the transfer terms for the energy, helicity, and enstrophy
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(a) (b) (c)

(d) (e) (f)

Figure 3: Correlation between various transfers of scale-space energy δq2 (a) & (d), helicity δh (b) & (e), and enstrophy
δω2 (c) & (f) for the experimental VK data (a)-(c) and the DNS of JHU (d)-(f) at the scale r = λ .

cascades are presented in figure 3. Starting with the energy,
the correlations of terms are in good agreement between both
the JHU and VK data. The most robust correlation lies be-
tween the unsteady transport A q2

t and the turbulent transport
T q2

. Recalling that T is associated with transport in physical
space Xk, the high correlation between A q2

t and T q2
is char-

acteristic of the advective nature of turbulence. This is known
from single-point analysis as the random sweeping effect and
extends to scale space (Yasuda & Vassilicos, 2018). As ex-
plained by Tsinober (2001), it is caused by the tendency of the
unsteady acceleration of the NS equations ∂

∂ t ui to anti-align
with the convective acceleration uk

∂

∂xk
ui, with increasing anti-

alignment for increasing Reynolds number.

It should be noted that the random sweeping effect is,
more accurately, represented by the correlation between A q2

t
and the difference T q2 − Πq2

(Yasuda & Vassilicos, 2018).
Nevertheless, the present analysis is restricted to correlations
between individual terms of equation 1. Despite this differ-
ence, a strong individual correlation with T q2

is observed,
consistent with the results of Yasuda & Vassilicos (2018).

Turning attention to the non-linear transfer Πq2
, a signif-

icant anti-correlation between Πq2
and the pressure transport

T q2

p is clear. Yasuda & Vassilicos (2018) used geometric anal-
ysis to show that this is due to the tendency of δui and δ

∂ p
∂xi

to align in such a way that compressing motions move energy
downscale and stretching motions upscale. Although the op-
posite happens too (e.g. compressing upscale and stretching

downscale), the overall tendency is for the pressure transport
to facilitate downscale energy transfer. The non-local nature of
the pressure field (Tsinober, 2001) and its resulting influence
on transport motivates the interpretation of this correlation as
a signature of non-locality on the non-linear energy transfer.
Despite the difference in domain and boundary conditions, for
the energy cascade the agreement in the correlation of T q2

p

and Πq2
between the two data sets is high.

The correlations of the transfer terms of the scale to
scale helicity reveal that the same mechanisms within the en-
ergy cascade are present in the helicity cascade. The random
sweeping effect is evident from the correlation between A h

t
and T h, being only slightly lesser in magnitude when com-
pared to the corresponding terms for the energy. In contrast to
the energy, the pressure transport T h

p appears to have only a
weak correlation with the non-linear transfer Πh. If the same
picture holds here as for the energy cascade, this indicates the
non-local role played by the pressure in facilitating the non-
linear cascade of helicity is not as significant at r = λ .

For the scale to scale enstrophy transfers, due to the “curl-
ing out” of the pressure transport, instead a generation term
G ω2

s features in equation 3. Caution must be exercised in in-
terpreting the results for the enstrophy transfers. Noise prop-
agation in the VK data renders correlations of A ω2

t and E ω2

particularly erroneous. As a result in the following we focus
on the results of the JHU data in figure 3(f).

A striking similarity with the energy and helicity cascades
is immediately apparent through the anti-correlation of the un-
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Figure 4: Correlation coefficients between terms of
equations 1 and 3 (respectively transfers terms of δq2

and δω2 on the horizontal and vertical axis) at r = λ in
the JHU data.

steady transport A ω2

t and turbulent transport T ω2
. This con-

firms that the random sweeping effect persists across cascades.
The generation term G ω2

s has a different instantaneous role
in the transfers of the enstrophy compared to the role of the
pressure transport in energy and helicity. It exhibits a posi-
tive correlation with E ω2

and a negative correlation with Dω2

ν .
This implies a concurrent enstrophy generation and dissipa-
tion mechanism (Davidson et al., 2008). This simultaneous
generation and dissipation is tied to a reduction (during high
dissipative events) or increase (during low dissipative events)
in the diffusion of enstrophy.

Correlations between cascades Correlations
between transfers of energy and helicity and between transfers
of enstrophy and helicity were computed and found to be uni-
versally near zero. This is due to the non positive definiteness
of helicity (Moffatt & Tsinober, 1992). At first glance, this ap-
pears to contradict a wealth of research that has identified clear
causal relationships between the three quantities (Bershadskii
et al., 1994; Biferale et al., 2013; Alexakis, 2017; Bos, 2021).
As discussed by Tsinober (2001), near-zero correlations are
necessary, but not sufficient, to determine that quantities are
unrelated. For example, the unsteady term ∂ui

∂ t is almost en-
tirely decorrelated with the material acceleration Dui

Dt simply
due to the underlying anti-correlation of ∂ui

∂ t with uk
∂ui
∂xk

.
Correlations between the transfers of energy and enstro-

phy are not affected by non positive definiteness and are shown
for the JHU data in figure 4. The most robust correlation ap-
pears in the dissipation, where the rate of energy dissipation
E q2

and the rate of enstrophy dissipation E ω2
are highly cor-

related. Following from this correlation between the dissipa-
tions, there is a negative correlation between energy dissipa-
tion E q2

and enstrophy diffusion Dω2

ν and a positive correla-
tion between energy dissipation E q2

and enstrophy generation
G ω2

s . Together, this supports the classical picture that the gen-
eration of small-scale structures leads to large gradients and in
turn the dissipation of energy (as well as enstrophy generation,
Siggia, 1981).

Several other observations are of note between the energy
and enstrophy cascades. The signature of the random sweep-
ing effect can be clearly seen amongst the weak correlations

between At and T . There is a positive correlation between
the transient energy A q2

t and the turbulent transport of enstro-
phy T ω2

(and vice-versa). Consider the turbulent transport
of enstrophy expressed as T ω2

= 1
2 Σuk

∂

∂Xk
δω2. When Σuk

aligns with the physical space gradient of the scale enstrophy
∂

∂Xk
δω2, the turbulent transport is positive. The sweeping mo-

tions (embodied by Σuk) assist the scale enstrophy gradient (in
other words, they sweep with the gradient). When Σuk anti-
aligns with ∂

∂Xk
δω2, the sweeping motions resist the scale en-

strophy gradient. Consider also the close relationship between
the dissipation of energy and the scale enstrophy. Together, the
positive correlation of T ω2

and A q2

t relates to energy decay
for sweeping motions assisting the physical space gradient of
the dissipation of energy. Similarly, it corresponds to energy
growth for sweeping motions resisting the physical space gra-
dient of the dissipation of energy. This effect is mirrored by
the positive correlation of T q2

and A ω2

t . This hints at the sig-
nificance of the alignment of sweeping motions with the scale
velocity gradients of the flow.

An anti-correlation between the unsteady terms A q2

t and
A ω2

t is also observed, with increasing anti-correlation for
decreasing scale. This implies that instantaneous enstrophy
growth corresponds to energy decay (and vice-versa). If we
again consider that the enstrophy positively correlates to the
dissipation of energy, this anti-correlation is interpreted as sim-
ply the tendency for the energy to decay when the local dissi-
pation is growing in time (and vice versa). This is unsurpris-
ing considering the role of the dissipation as a sink. Due to
the tendency of ∂ui/∂ t to anti-align with uk

∂

∂xk
ui (the random

sweeping effect), the same phenomenon follows for the anti-
correlation of T q2

and T ω2
.

CONCLUSIONS
We have presented an instantaneous analysis of the si-

multaneous energy, helicity, and enstrophy cascades of forced
homogeneous incompressible turbulence focusing on the sep-
aration at the Taylor microscale. The scale-space frame-
work, already well established for generalisation of the energy
cascade via the KHMH equation, has been extended analo-
gously to the scale-space helicity and enstrophy. It was found
that large-scale sweeping is present across the three cascades:
this is identified through the significant anti-correlation of the
transient and physical-space transport terms of each cascade.
In addition, the correlation between the pressure and inter-
scale transfer terms, already reported by Yasuda & Vassili-
cos (2018) in the context of the energy cascade, is observed
in the helicity cascade. The energy and enstrophy cascades are
found to correlate with each other mostly through the genera-
tion/dissipation of enstrophy and dissipation of kinetic energy.
The signature of the random sweeping mechanism is also iden-
tified between them. The present work represents a rich frame-
work for future analyses of turbulence cascades in scale space
coordinates.
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