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ABSTRACT
The effect of a mean magnetic field on the development

of the Rayleigh-Taylor instability is investigated using high-
resolution direct numerical simulations. The magnetic field is
applied and maintained perpendicular to the interface between
two miscible fluids. It initially inhibits small-scale shear in-
stabilities so that mixing is reduced, and hence structures are
strongly stretched in the vertical direction and rapidly grow.
At some point, when the typical vertical velocity exceeds the
Alfvèn velocity imposed by the mean magnetic field, the flow
experiences a rapid transition to turbulence, shear instabilities
develop, structures break and mixing occurs.

INTRODUCTION
Perturbations at the interface between two fluids such that

the direction of the acceleration is opposite to the mean density
gradient may become unstable with the baroclinic production
of vorticity: this is the Rayleigh-Taylor instability (RTI). In the
case of miscible fluids, a turbulent mixing zone emerges and
grows with time. If these two fluids have magnetic properties,
the magnetohydrodynamics (MHD) equations are required, in
addition of the Navier-Stokes equations, to describe the full
dynamics. The magnetic Rayleigh-Taylor instability (MRTI)
can play an important role in several astrophysical systems,
such as for example the formation of the Crab nebula, the
emergence of magnetic fluxes from the Sun interior, the accre-
tion onto compact objects, the expansion of young supernova
remnants, ... (see Carlyle & Hillier (2017); Hillier (2018) and
references therein).

For inviscid and incompressible fluids with a mean mag-
netic field applied parallel to the interface, a perturbation of
wavevector kkk parallel to the interface is unstable only if B0
(the mean magnetic field intensity scaled as the Alfvèn ve-
locity) is smaller than the critical value Bc =

√
A g/k, where

A is the Atwood number, k = |kkk| the wavenumber, and g the
magnitude of the gravitationnal acceleration (Chandrasekhar
(1961)). Early simulations have revealed that ascending and
descending structures are greatly smoothed when B0 < Bc,
changing the usual picture of growing mushrooms into elon-
gated fingers (Jun et al. (1995)). This observation was con-
firmed later in 3D direct numerical simulations (DNS), where
an initial perturbed interface develops, in the presence of a

parallel B0, with elongated fingers separated by a distance
λc = 2πB2

0/(A g), which is somehow representative of the
Crab nebula structure (Stone & Gardiner (2007a,b); Carlyle
& Hillier (2017)).

The knowledge of this typical distance λc between struc-
tures and their growth rate α may be used to evaluate the in-
tensity of the ambient magnetic field, under some strong hy-
pothesis (Ryutova (2010); Hillier (2018)).

Note that in this configuration with a mean magnetic
parallel to the interface, the interchange mode, such that
kkk · BBB0 = 0, is not damped at all. This is the reason why
magnetic shear has also been investigated (Carlyle & Hillier,
2017) where the direction of BBB0, still in the plane of the
interface, is different in the lower and upper fluids.

In this work, we rather focus on the less investigated fram-
work where the mean magnetic field is perpendicular to the
interface: this configuration remains statistically axisymetric.
In this case, the growth rate of a single mode of wavelength
2π/k is damped, but the instability still occurs (Chandrasekhar
(1961)): unlike the tangential magnetic field, there is no criti-
cal wavelength for which the instability is totally suppressed.

For a fully perturbed interface, Jun et al. (1995) observed
with 2D simulations that, depending on the magnitude of B0,
the MRTI can be either enhanced or reduced with respect to
the non-magnetic case. However, it is not clear how the 2D
configuration affects the results: indeed, it is known that in the
purely hydrodynamic case, 2D and 3D simulations of the RTI
yield quite different results (Dimonte, 2004).

In order to shed some light on the MRTI, we propose to
quantify how the vertical mean magnetic field affects mixing
at small scales and the dynamics of large scales, thanks to
high resolution DNS. In particular, we are interested in the
transition between the early damped phase, where magnetic
effects inhibit shear instabilities between structures and hence
turbulent mixing, and a later regime where turbulence is strong
enough to break the smooth elongated fingers.

EQUATIONS AND NUMERICAL SETUP
The motion of the two incompressible fluids, initially at

rest in an unstable configuration and separated by a flat in-
terface, is given by the following set of equations within the
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Boussinesq approximation:(
∂t +uuu ·∇∇∇−ν∇

2
)

uuu =−∇∇∇p−2A gCnnn3

+(∇∇∇×BBB)×BBB, (1)(
∂t +uuu ·∇∇∇−η∇

2
)

BBB = (BBB ·∇∇∇)uuu, (2)(
∂t +uuu ·∇∇∇−κ∇

2
)

C = 0, (3)

∇∇∇ ·uuu = 0, ∇∇∇ ·BBB = 0, (4)

where uuu is the velocity field, BBB the total magnetic field scaled
as a velocity, with BBB= bbb+B0nnn3 and nnn3 the upward unit vector,
C the concentration field, p is the reduced pressure, and ν , η

and κ are respectively the kinematic viscosity, magnetic dif-
fusivity and molecular diffusivity. For simplicity, we choose
ν = κ = η .

The pseudo-spectral code STRATOSPEC, previously
used to investigate turbulent mixing within the Faraday insta-
bility (Briard et al. (2020)), is employed here to solve equa-
tions (1)-(4). The domain is a triply periodic cubic box of
size 2π , and time advancement is realized using a third-order
strong stability preserving Runge-Kutta scheme. To evaluate
the effects of the magnitude of B0, DNS with N = 10243 grid
points are performed. A summary of the simulations is pro-
vided in Table 1.

Table 1. Parameters of the DNS: Number of points N, At-
wood number times gravitational acceleration A g, Mean ver-
tical magnetic field intensity B0, Diffusion coefficients ν .

Label N A g B0 ν = κ = η

R1B0 10243 0.5 0 2×10−4

R1B01 10243 0.5 0.10 2×10−4

R1B02 10243 0.5 0.20 2×10−4

R1B05 10243 0.5 0.50 2×10−4

At t = 0, only the scalar field is perturbed at the interface
according to

C(xxx, t = 0) =
1
2

[
1+ tanh

(
z−S (x,y)

σ

)]
, (5)

with σ = 0.02, a small parameter that ensures at least 20 points
along z for the lowest resolution. S (x,y) is a deformation sur-
face that is determined by a variance and a peak wavenumber:
the same deformation is used for all simulations at a given res-
olution, with the peak wavenumber 40 ≤ kp ≤ 50, and an in-
frared slope like k4.

With such an initialization, scalar perturbations induce
velocity fluctuations through the buoyancy term 2A gC in
(1), which in turn produce magnetic fluctuations through the
stretching term B0∂zuuu in (2).

TRANSITION TO TURBULENT MIXING
First, in order to illustrate the impact of a vertical mean

magnetic field on a developing mixing zone, the 3D concen-
tration field C of DNS R1B0 is presented in figure 1 in the

non-magnetic case. Shortly after t = 0, a variety of bubble-
like structures appear. Merging and shearing between ascend-
ing and descending structures lead to turbulent mixing and a
great diversity of scales, which can be deduced from the sec-
ond image of figure 1 with intermediate values of C (light blue
and yellow). Later on, the turbulent mixing zone L(t) eventu-
ally grows like L∼ t2 (Youngs, 1994).

If a vertical magnetic field is added to the previous con-
figuration, the development of structures is dramatically al-
tered, as revealed in figure 2. Indeed, instead of growing
bubbles, the interface perturbations are stretched, without any
mixing, which gives birth to these remarkable smooth fingers.
The mean magnetic field inhibits small-scale shear instabilities
between structures, which hence eventually grow faster than
in the non magnetic case. When turbulence becomes strong
enough to overcome the damping imposed by the magnetic
field, fingers develop bubbles at their edges. Later on, the usual
picture of a turbulent Rayleigh-Taylor mixing zone is recov-
ered, with bubbles of different sizes, and complex interacting
patches of scalar of different intensities, as can be seen on the
sides of the DNS box in the third image of figure 2.

To better quantify the complex dynamics of the MRTI, we
investigate in figure 3 the time evolution of the mixing zone
size, defined as

L(t) = 6
∫
〈C〉(1−〈C〉)dz, (6)

where 〈·〉 refers to the horizontal average. At the instability on-
set, the non magnetic case (black) obviously increases the most
rapidly, since there is no damping by the mean magnetic field.
This is in agreement with the linear theory (Chandrasekhar,
1961) and with early 2D simulations by Jun et al. (1995). For
B0 6= 0, the more intense B0, the slower the growth of L(t).

But later one, when turbulence becomes sufficiently in-
tense to overcome the magnetic tension, structures break and
one eventually recovers the usual picture of the RTI, with a
nonlinear saturation that yields L(t) = 2αA gt2, with α the
growth rate of the ”bubbles”, which is approximately α = 0.02
in R1B0.

It is possible to be more specific about the statement that
structures break when ”turbulence becomes strong enough”.
In fact, such a criterion was already invoked in Jun et al.
(1995). Considering the (vertical) interface between ascending
and descending smooth structures in the case of a sufficiently
intense vertical B0, this amounts to a kind of magnetic Kelvin-
Helmholtz configuration, without any gravity. The inviscid lin-
ear stability analysis of the magnetic Kelvin-Helmholtz flow
was performed in Chandrasekhar (1961), and in the present
situation this eventually yields that the structures are destabi-
lized if

V3 > B0, (7)

namely if the typical turbulent vertical velocity V3 exceeds
the Alfvèn velocity B0. To verify this criterion, we choose

V3 =

√
u2

3, where u2
3 is the vertical kinetic energy. The com-

parison between the DNS results and the simple criterion (7)
is presented in figure 4.

The ratio V3/B0 is presented for three different values of
B0. For the lowest value B0 = 0.10, V3 overcomes B0 quite
early, and a change of regime is observed around t ' 3, which
was already seen in figure 3. This change of dynamics illus-
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Figure 1. Time evolution of the concentration field C (from left to right) of DNS R1B0 10243, without any magnetic field. The color
scale indicates the value of C, that varies between 0 (dark blue) and 1 (red); pure fluids are transparent.

Figure 2. Time evolution of the concentration field C (from left to right) of DNS R1B02 10243, with the vertical mean magnetic field
intensity B0 = 0.2. The color map is the same as figure 1.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

0 2 4
0

1

2

Figure 3. Effects of the mean magnetic field intensity B0 in
the R1 simulations. Mixing zone size L (6).

trates the transition between smooth growing fingers, and tur-
bulent mixing of sheared bubbles: this will be better character-
ized in terms of anisotropy and mixing later on.

For B0 = 0.20, the transition happens later since the mag-
netic damping is stronger. Finally, for the strongest Alfvèn
velocity B0 = 0.5, turbulence is never intense enough to over-
come the mean magnetic field and generate small-scale shear
instabilities between structures. Hence, the criterion (7), orig-
inating from inviscid linear stability analysis, provides a lower
bound for the transition to turbulence in the MRTI.

Now that we have shown that transition to turbulence
corresponds to a slowing down of the turbulent mixing zone
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Figure 4. Effects of the mean magnetic field intensity B0
in the R1 simulations. Normalized vertical velocity with the
Alfven velocity V3/B0, see criterion (7).

growth, which is well characterized by the ratio of the vertical
turbulent velocity and Alfvèn velocity, we turn our attention to
mixing, and define the so-called mixing parameter

Θ = 1− 6
L

∫
〈c2〉dz, (8)

where 〈c2〉 refers to the horizontal average of the concentra-
tion variance. This mixing parameter quantifies how well the
two fluids are mixed together, with Θ = 1 for perfectly mixed
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Figure 5. Effects of the mean magnetic field intensity B0 in
the R1 simulations. Mixing parameter Θ defined in (8).

fluids. In classical RTI, this parameter can be related to the
growth rate α of the mixing zone under the Boussinesq ap-
proximation (Gréa (2013)).

We investigate in figure 5 this mixing parameter for differ-
ent values of the mean vertical magnetic field B0. For the non
magnetic case, Θ tends to 0.8 after a transient regime, value
which is typical for the RTI (see fig9 in Gréa (2013) and ref-
erences therein). For a weak magnetic field B0 = 0.10, the
transient regime is longer, but the final state remains close to
the hydrodynamic case. Nevertheless, the final value of Θ is
slightly smaller, showing that the initial damping of the mean
magnetic field is reflected in the long-time dynamics.

More interestingly, this behavior is not monotonous with
increasing B0. Indeed, when the mean magnetic field intensity
is further increased to B0 = 0.20, the transient regime is once
again longer, but the final value of Θ is the same as in the non-
magnetic case. Therefore, according to these global quantities,
it seems that there is an optimal B0 for a given configuration
that boosts turbulence: this observation was already made in
2D simulations (Jun et al., 1995).

Finally, for B0 = 0.50, as already seen in figure 4, there
is never a transition to turbulence, so that magnetic tension al-
ways inhibits small-scale shearing instabilities, and no mixing
occurs. Remark that the strong initial decrease of Θ reflects the
length of the transient regime where structures grow without
significant small-scale shear. For different initial conditions,
with bigger perturbations for instance, the initial value of Θ

could be smaller.
Finally, we analyze the anisotropy at the level of the scalar

field. This is done thanks to the following parameter

sin2
γ =

∫
∞

0
∫

π

0 Ecc(kkk)sin3
θdθdk∫

∞

0
∫

π

0 Ecc(kkk)sinθdθdk
, (9)

where Ecc(kkk) = ĉ(kkk)ĉ(kkk) is the spectral variance density, ĉ is
the Fourier transform of the concentration fluctuation c =C−
〈C〉, so that

∫∫
k2Ecc sinθdθdk = c2, with kkk · nnn3 = k cosθ . In

particular, for an isotropic field, sin2
γ = 2/3.

This global anisotropy parameter is presented in figure
6. Remarks comparable to those regarding Θ can be made,
namely that the stronger B0, the longer the transient regime.
In this transient regime, sin2

γ first increases, which reflects the
stretching of the initial interface perturbations under the effects
of gravity. The mean magnetic field amplifies this anisotropy
by stretching even more the structures. Note that values like
2/3≤ sin2

γ ≤ 1 correspond to vertically elongated structures.

0 2 4 6 8 10
0.2

0.4

0.6

0.8

1

1.2

Figure 6. Effects of the mean magnetic field intensity B0 in
the R1 simulations. Global anisotropy parameter sin2

γ defined
in (9).

When there is an effective transition to turbulence with
small-scale shear instabilities, sin2

γ is significantly reduced,
which is correlated to the increase of Θ in figure 5, due to the
return to isotropy of the smallest scales of the flow. Except
for B0 = 0.5, where the Alfvèn velocity is so strong that the
smooth elongated fingers continue to grow without mixing.

An interesting feature here, different from the observa-
tions made regarding Θ, is that even in the asymptotic state,
the final value of sin2

γ increases with B0, which shows that
there is still a strong imprint, in the fully turbulent regime, of
the vertical anisotropy imposed by the mean magnetic field.

CONCLUSIONS
The Rayleigh-Taylor instability submitted to a mean ver-

tical magnetic field has been investigated with the use of high
resolution DNS. The dramatic effect of the Lorentz force on
the overall dynamics is to initially inhibit small-scale shear
instabilities between ascending and descending structures, so
that mixing is strongly damped. Instead of turbulent bubbles,
smooth elongated fingers emerge, that grow rapidly since there
is no small scale mixing.

When turbulence becomes strong enough, meaning that
the typical vertical velocity of the fluid exceeds the Alfvèn
velocity, shear eventually induces mixing, fingers break and
traditional bubbles are recovered. The mixing and global
anisotropy parameters were investigated to better quantify this
transition to turbulence, and the outcome is interesting. It
seems that there is an optimal value of B0 such that mixing
remains as effective as the non-magnetic case. This is possibly
because with a long transient where smooth elongated fingers
grow, a larger surface for mixing becomes available when the
flow transitions to turbulence.

Regarding anisotropy, the conclusion is somehow dif-
ferent, since even in the fully turbulent regime, the vertical
anisotropy of the concentration field is greater for larger B0,
which is a permanent imprint of the mean vertical magnetic
field.

The perspectives of this study are to investigate more
deeply two-point statistics in order to provide scale-by-scale
information about anisotropy, but also spectral scalings. We
wish also to perform simulations at better resolution to in-
crease the level of turbulence, and investigate if the observa-
tions made regarding the ”booster effect” of the vertical mean
magnetic field persist.
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