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ABSTRACT
We investigate the subgrid-scale (SGS) turbulent kinetic

energy (hereafter referred to as SGS energy) and its transport
equation by employing the stabilized mixed model (SMM)
developed by Abe (2013). The prediction of the budget for
the modeled transport equation is qualitatively well compared
with the filtered DNS via the Gaussian filter. In addition, the
production term balances with the dissipation rate in the outer
region, which suggests that the transport equation can be re-
duced by assuming the equilibrium between them. We inves-
tigate five algebraic expressions for the SGS energy. Among
them, the equilibrium form with a newly introduced damping
function yields the best compared with the SMM. The zero-
equation SMM (ZE-SMM) that employs the equilibrium form
instead of the transport equation for the SGS energy provides
quantitatively equivalent results as the original SMM. This
study paves the way for constructing a convenient anisotropic
SGS model that is robust even in coarse grid resolutions.

ANISOTROPIC STRESS MODELING AND SGS
ENERGY TRANSPORT

In the recent development of SGS modeling, several
studies demonstrated that the anisotropic stress term signifi-
cantly improves the grid sensitivity of large-eddy simulation
(LES) (Abe, 2013; Inagaki & Abe, 2017; Marstorp et al.,
2009; Montecchia et al., 2017). Abe (2019) and Inagaki &
Kobayashi (2020) revealed that the anisotropic stress term es-
sentially contributes to the generation of the grid-scale (GS)
or resolved-scale Reynolds shear stress and energy spectrum
at the high-wavenumber region. Therefore, the investigation
of the anisotropic SGS stress models paves the way for the
further development of LES of a more high-Reynolds number
turbulent flows.

In these anisotropic models, the SGS energy is employed
in the transport coefficients of the modeled stress. Especially
in the SMM (Abe, 2013), the SGS energy is obtained by
numerically solving its transport equation, which is referred
to as the one-equation model (OEM). In the OEM with the
eddy-viscosity assumption, the balance between the produc-

tion and dissipation terms in the SGS energy transport yields
the Smagorinsky model (Smagorinsky, 1963). Therefore, we
can interpret that the OEM incorporates the nonequilibrium
effect on the transport coefficients. One may consider that
the nonequilibrium effect resulting from the OEM significantly
contributes to the robustness of the SMM against the grid res-
olution. However, the physical nature of OEMs has not been
investigated in detail yet. In general, solving an additional
transport equation can be a numerical burden and lose the con-
venience of the model. Furthermore, the modeled transport
equation does not guarantee the positive semi-definiteness of
the SGS energy. Consequently, the negative SGS energy must
be clipped when the eddy viscosity is modeled in terms of its
square root. If the OEM is reduced to an algebraic or zero-
equation model of SGS energy in a physically reliable manner,
the convenience of the SGS model significantly increases.

In the present study, we investigate the physical property
of the OEM via the SMM with the filtered DNS data in tur-
bulent channel flows. Thanks to the robustness of the SMM
against the grid resolution, we can investigate the SGS energy
in a coarse grid resolution in which the SGS energy is healthier
than the conventional LES with the eddy-viscosity models. We
also demonstrate the reduction of the SMM into the ZE-SMM
that excludes the transport equation for the SGS energy.

Introduction of SMM and OEM
In the SMM, the SGS stress τsgs

i j (= uiu j − uiu j) is mod-
eled as follows:

τsgs
i j =

2
3

ksgsδi j −2νsgssi j + τeat
i j , τeat

i j = 2ksgs τa
i j|tl +2νasi j

τa
ℓℓ

,

νa =−
τa

i j|tlsi j

2sℓmsℓm
, τa

i j = (ui − ûi)(u j − û j). (1)

Here, ksgs(= τsgs
ℓℓ /2) and νsgs denote the SGS energy and

eddy viscosity, respectively. · and ·̂ denote the filter and test
filter operations, respectively. ui is the velocity field and
si j[= (∂ui/∂x j + ∂u j/∂xi)/2] is the GS strain rate. The SGS
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eddy viscosity νsgs is expressed by

νsgs =Csgs fν ∆
√

ksgs, fν = 1− exp[−(dε/A0)
2/(1+C0)],

dε =
uε y
ν

(
y
∆

)C0

, uε = (νεsgs)1/4. (2)

Here, ∆ denotes the filter length scale and ν is the kinematic
viscosity. εsgs will be provided later. Inagaki & Abe (2017)
suggested the following parameters: ∆ = (∆x∆y∆z)1/3, Csgs =
0.075, A0 = 13, and C0 = 1/3. ∆x, ∆y, and ∆z are the grid
spacing in each direction in a Cartesian coordinate. The filter
length scale for the test filter is set to be ∆̂ = 2∆.

In OEMs including the SMM, ksgs is obtained by numer-
ically solving the following transport equation:

∂ksgs

∂ t
=− ∂

∂xi
(uiksgs)− τsgs

i j si j − εsgs

− ∂
∂x j

(T t,sgs
j +T p,sgs

j )+ν
∂ 2ksgs

∂xi∂xi
, (3)

where εsgs = ν [(∂ui/∂x j)2−(∂ui/∂x j)
2], T t,sgs

j = u juiui/2−
u juiui/2− uiτ

sgs
i j , and T p,sgs

j = pu j − p u j. We refer to the
terms on the right-hand side of Eq. (3) as convection, produc-
tion, dissipation, turbulent diffusion, pressure diffusion, and
viscous diffusion, respectively. In OEMs, εsgs and T t,sgs

j +

T p,sgs
j are modeled as follows:

εsgs =Cε
(ksgs)3/2

∆
+

2νksgs

y2 , (4)

T t,sgs
j +T p,sgs

j =−Ck fν ∆
√

ksgs ∂ksgs

∂x j
. (5)

Here, y denotes the distance from the solid wall. The second
term on the right-hand side of Eq. (4) is the wall correction
term. We set Cε = 0.835 and Ck = 0.1 (Inagaki & Abe, 2017).
Note that in the SMM, τeat

i j si j = 0 owing to the stabilization
treatment of the νa-related term. Hence, the production always
yields a positive. Namely, −τsgs

i j si j = 2νsgss2 ≥ 0 where s2 =
si jsi j .

NUMERICAL SIMULATION
We perform LESs of the SMM and DNS in turbulent

channel flows in a Cartesian coordinate with a staggered grid
system. x, y, and z denote the streamwise, wall-normal, and
spanwise directions, respectively. For details of the numerical
schemes, please refer to Inagaki & Kobayashi (2020, 2022).
For the reference LES of the eddy-viscosity model, we also
perform the case with τeat

i j = 0 and Csgs = 0.042 in the SMM,
which is referred to as the EVM. Note that Csgs = 0.042 is the
best value for the eddy-viscosity-based OEMs (Inagaki, 2011;
Inagaki & Kobayashi, 2020). The Reynolds number is set to
be Reτ (= uτ h/ν) = 400 where h, uτ (=

√
|∂Ux/∂y|wall|), and

Ux(= ⟨ux⟩) denote the channel half width, wall-friction veloc-
ity, and mean velocity, respectively. For the LES at higher
Reynolds numbers, we also perform the cases at Reτ = 1000
and 2000. The statistical average ⟨·⟩ is taken over the x–z plane
and time. Details of the parameters are provided in Table 1.
Here and hereafter, the values with the superscript “+” indi-
cate those normalized by ν and uτ . For the analysis of the

Table 1. Numerical parameters. The domain size is Lx×Ly×
Lz = 2πh×2h×πh. LR and MR denote the low and medium
resolutions, respectively.

Case Reτ Nx ×Ny ×Nz ∆x+ ∆z+

SMM LR 400 24×64×16 105 79

SMM MR 400 48×64×32 52 39

EVM LR 400 24×64×16 105 79

EVM MR 400 48×64×32 52 39

DNS 400 256×192×256 9.8 4.9

SMM1000 1000 48×96×32 131 98

SMM2000 2000 96×128×64 131 98
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Figure 1. Mean velocity profiles for the DNS, SMM, and
EVM at Reτ = 400 in each grid resolution.

filtered DNS, we employ the Gaussian filter only in the x and
z directions where the cut-off wavenumber corresponds to the
maximum wavenumber of the LES.

Numerical results
Figure 1 shows the mean velocity profiles for the DNS,

SMM, and EVM at Reτ = 400. The EVM overestimates the
mean velocity in the LR. In contrast, for the SMM, the mean
velocity profiles are comparable to the DNS for both resolu-
tions. Figure 2 shows the budgets for the SGS energy transport
equation for the filtered DNS and SMM in the LR. Although
the SMM overestimates the production and dissipation rates in
the near-wall region, the prediction of the SMM is fairly well
compared with the filtered DNS. Furthermore, the production
term balances with the dissipation rate in y+ > 50, which sug-
gests that the transport equation can be reduced by assuming
the production–dissipation equilibrium.

Figure 3 shows the correlation between the production
and dissipation terms in the SGS energy transport equation,
where the correlation coefficient is defined by cor( f ,g) =
⟨ f ′g′⟩/

√
⟨ f ′2⟩⟨g′2⟩ with f ′ = f −⟨ f ⟩. For the filtered DNS,

the correlation is low. Hence, the local equilibrium assumption
is poor, as it is classically discussed. This result is obvious be-
cause the backscatters often occur in the filtered DNS, which
must not balance with the local dissipation. In contrast, the
LESs of both the SMM and EVM provide a high correlation
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Figure 2. Budgets for the SGS energy transport equation for
the DNS (solid lines with symbols) and SMM (dashed lines
with symbols) at Reτ = 400 in the LR. The dash-dotted line
represents the dissipation term without wall correction in the
SMM; ⟨Cε (ksgs)3/2/∆⟩.
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Figure 3. Correlation coefficient between the production Psgs

and dissipation εsgs for the filtered DNS, SMM and EVM.
Note that for the LESs, the dissipation term excludes the wall
correction term; namely, εsgs =Cε (ksgs)3/2/∆ is employed.

that yields 80%. In addition, the correlation is high at high-
Reynolds-number cases. This result partly emanates from the
modeling of the production term given by 2νsgss2, which is
always positive and excludes the backscatter. Therefore, if the
OEMs employ the eddy-viscosity-based production term, the
local production–dissipation equilibrium assumption can be a
good model.

Reduction of SMM employing an algebraic ex-
pression for SGS energy

In the region away from the wall, the local production–
dissipation equilibrium in the SGS energy transport equation
yields ksgs = (2Csgs/Cε )∆

2s2. However, this model cannot
be applied in the near-wall region because s2 does not de-
crease, whereas ksgs must decrease as O(y2). A primitive
approach to representing the proper near-wall behavior is to
employ a damping function. A basic damping function is
1 − exp[−(y+/A)2] with a constant A. However, the wall-
friction velocity uτ is not always a suitable variable for the
damping function because it yields zero at a separation point
(see e.g. Inagaki, 2011). Here, we introduce a new damping
function that is applicable to the turbulent flows with separa-
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Figure 4. Ration of the SGS energy to the local equilibrium
expression for the SMM with respect to the mean distance
from the wall normalized by the GS Kolmogorov length scale
⟨ys⟩.

tion points:

fk =
1− exp[−(ys/as)

2]

1+ exp[−bsys + cs]
, ys =

y(s2)1/4

ν1/2
. (6)

Here, ys can be interpreted as the distance from the wall nor-
malized by the GS Kolmogorov length scale. Namely, ys =
y/ηgs with ηgs = (νεgs/2)1/4 and εgs = 2νs2. The numerator
of fk realizes the near-wall asymptote fk ∼ O(y2), whereas the
denominator represents the strong damping of the SGS energy
in the vicinity of the wall.

Figure 4 shows the profiles of the ratio of the SGS energy
to the local equilibrium expression for the SMM with respect
to the mean distance from the wall normalized by the GS Kol-
mogorov length scale ⟨ys⟩. This ratio corresponds to the exact
damping behavior in the near-wall region. Note that y+ = 50
and 100 correspond to ⟨ys⟩= 10 and 20, respectively. Regard-
less of the Reynolds number, the ratio almost collapses to a
single curve in the near-wall region. The black dashed line
with crosses depicts the best fit curve obtained by minimizing
the mean square error of the SGS energy between the exact
profile and model expression for the SMM at Reτ = 400 in the
LR. The parameters yield as = 0.6, bs = 0.77, and cs = 7.3.
However, in the a posteriori test that employs the algebraic
expression of SGS energy with this damping function, the
mean velocity is slightly underestimated with these parame-
ters. Therefore, in the a posteriori test, we refine the parameter
as cs = 7.6. The damping function with the refined parameter
is plotted in Fig. 4 in the gray solid line with pluses.

In LES, we can employ the scale-similarity models (Bar-
dina et al., 1983) as a representative quantity to express the
model of SGS energy. The dynamic procedure (Marstorp
et al., 2009; Montecchia et al., 2017) or invariants of the ve-
locity gradient (Kobayashi, 2005; Silvis et al., 2017) are also
useful in expressing the near-wall asymptote of the SGS en-
ergy. Here, we compare the following algebraic expressions
for the SGS energy calculated in the SMM with the result via
the transport equation:

1. SGS-Reynolds form

CS(ui − ûi)(ui − ûi), (7)

2. dynamic form (Marstorp et al., 2009; Montecchia et al.,
2017)
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Figure 5. Profiles of the SGS energy for the filtered DNS,
SMM, and several model expressions calculated in the SMM
in (a) LR and (b) MR at Reτ = 400.

2CD∆2s2, CD =
1
4
⟨LM⟩
⟨M2⟩

,

L = ûiui − ûiûi, M = ∆̂
2
ŝ2 −∆2ŝ2, (8)

3. coherent structure form (Kobayashi, 2005)

CCSFCS∆2s2, FCS =
|w2 − s2|
w2 + s2 , (9)

4. vortex stretching form (Silvis et al., 2017)

CVSFVS∆2s2, FVS =
(si jω j)

2

s2ω2
ℓ

, (10)

5. equilibrium form with the new damping function

fk
2Csgs

Cε
∆2s2, (11)

where wi j = (∂ui/∂x j − ∂u j/∂xi)/2, ω i = εi jℓ∂uℓ/∂x j, and
fk is provided by Eq. (6) with as = 0.6, bs = 0.77, and cs = 7.6.
All model expressions satisfy the near-wall asymptote ksgs ∼
O(y2). The model constants are set to be CS = 2.5, CCS = 0.7,
and CVS = 1.1.

Figures 5(a) and (b) show the profiles of the SGS energy
for the filtered DNS, SMM, and several model expressions cal-
culated in the SMM provided by Eqs. (7)–(11) in the LR and
MR, respectively, at Reτ = 400. In the LR, the profile of the
SMM is reasonable compared with the filtered DNS. However,
in the MR, the SMM overestimates the SGS energy compared
with the filtered DNS. Hence, we can observe that the OEM
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Figure 6. Mean velocity profiles for the DNS, SMM, and ZE-
SMM. The results for Reτ = 1000 and 2000 are shifted by a
factor of five and ten, respectively. The DNSs at Reτ = 1000
and 2000 are performed by Lee & Moser (2015).

with the SMM does not necessarily predict the profile of the
SGS energy for the filtered DNS. Although the SGS-Reynolds
form seems to be reasonable in the LR, it excessively overes-
timates the profile. Hence, if we employ the SGS-Reynolds
form instead of the OEM, the model will highly depend on the
grid resolution. The dynamic, coherent structure, and vortex
stretching forms fail to reproduce the sharp profile in the near-
wall region. In contrast, the equilibrium form succeeds in pre-
dicting the sharp profiles like the filtered DNS and SMM. For
the equilibrium form, we also plot the result of the a posteriori
test, which is almost similar to that of the a priori test. Note
that the a priori test indicates the prediction using the data of
the SMM, whereas the a posteriori test indicates the result of
the simulation of the ZE-SMM that employs the equilibrium
model for the SGS energy instead of solving its transport equa-
tion. Among five model expressions (7)–(11), the equilibrium
form with the new damping function yields the best compared
with the SMM. Therefore, we expect that the equilibrium form
with the new damping function (11) can provide a similar re-
sult compared with the original OEM-based SMM.

Performance of ZE-SMM
Figure 6 shows the mean velocity profiles for the DNS,

SMM, and ZE-SMM. For all cases, the ZE-SMM provides
a comparable profile compared with the original OEM-based
SMM and well predicts the profile of the DNS. The total tur-
bulent kinetic energy K is defined as

K =
1
2
〈
u′iu

′
i
〉
+ ⟨ksgs⟩ . (12)

This decomposition is unique when the filtering is employed
only in the directions that the spatial average is taken. In the
present LESs, we assume that the right-hand side of Eq. (12)
yields the total turbulent kinetic energy despite the employ-
ment of an implicit filtering operation in the y direction. Fig-
ure 7 shows the profiles of the total turbulent kinetic energy for
the DNS, SMM, and ZE-SMM. The ZE-SMM provides almost
the same profile as the original SMM for all cases, although the
SGS energy decreases as seen in Fig. 5. For high-Reynolds-
number cases of Reτ = 1000 and 2000, both the SMM and ZE-
SMM slightly underestimate the total turbulent kinetic energy
in the outer region. Further improvement of the SGS model
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is required to reproduce a more accurate profile of the total
turbulent kinetic energy.

Inagaki & Kobayashi (2020) suggested that the enhance-
ment of small-scale turbulence contributes to the robustness of
the SMM against the grid resolution. The GS Reynolds stress
spectrum is defined by

EGS
i j (kx,y) = ℜ

〈
ũ′iũ

′
j
∗
〉
, (13)

where we consider the Fourier transformation only in the x
direction:

ũi(kx,y,z) =
1
Lx

∫ Lx

0
dx ui(x,y,z)exp[−ikxx]. (14)

We focus on the most energetic part, that is, the streamwise
component EGS

xx . Figure 8 shows the streamwise component of
the premultiplied GS Reynolds stress spectrum for the filtered
DNS, SMM, ZE-SMM, and EVM. Here, the λx(= 2π/kx) is
the wavelength. The filtered DNS provides a large intensity of
the spectrum even in the small scales λ+

x < 300. The result of
the ZE-SMM is almost the same as that of the SMM, which
indicates that the reduction of the OEM by employing the al-
gebraic model (11) does not change the statistical property of
the SMM. Both the SMM and ZE-SMM also provide a large
intensity in the small scales λ+

x < 300 in the near-wall region
y+ < 50. In the outer region, the SMM and ZE-SMM provide a
smaller intensity than the filtered DNS. To predict the large in-
tensity in the outer region, we have to further improve the SGS
model. For the EVM, the spectrum rapidly decreases in the
small scale λ+

x < 400. This underestimation of the spectrum
results from the poor physical role of the eddy-viscosity mod-
els (see Inagaki & Kobayashi, 2020). The anisotropic stress is
essential in the reproduction of small-scale turbulence.

CONCLUSIONS
We investigated the transport equation for the SGS energy

in turbulent channel flows via the DNS and LES employing the
SMM. Thanks to the robustness of the SMM against the grid
resolution, we succeeded in examining the properties of the

SGS energy and its transport under the condition that the SGS
energy is healthier than the conventional LESs. For the LR
case at Reτ = 400, the peak value of the SGS energy is ap-
proximately 50% of that of the total turbulent kinetic energy
(see Figs. 5 and 7) even though the mean velocity profile is
comparable to the DNS. The budget of the modeled transport
equation for the SGS energy is qualitatively comparable with
the exact one calculated in the filtered DNS. In the budget, the
production term balances with the dissipation rate in the outer
region. For the filtered DNS, as is well known, the correlation
between the production and dissipation terms is low. In con-
trast, for the LESs employing the OEM, the production term
correlates well with the dissipation. This result indicates that
the local production–dissipation equilibrium assumption can
be a good approximation for the OEMs, although this assump-
tion does not hold in the filtered DNS.

To construct an algebraic expression for the SGS energy
based on the local equilibrium assumption, we introduced a
new damping function where the distance from the solid wall
is normalized by the GS Kolmogorov length scale. The ra-
tio of the SGS energy to the local equilibrium model almost
collapses to a single curve when it is plotted with respect to
the mean distance from the solid wall normalized by the GS
Kolmogorov length scale. Based on this curve, we developed
a new damping function. We compared the profiles of the
SGS energy for the filtered DNS, SMM, and several model
expressions including the local equilibrium model with the
damping function. Among the model expressions provided in
the present analysis, the equilibrium model with the damping
function yields the best prediction compared with the result of
the transport equation in the SMM.

Finally, we performed the reduced model of the SMM
that employs the equilibrium form with the damping func-
tion for the SGS energy instead of solving the transport equa-
tion, which is referred to as the ZE-SMM. The ZE-SMM has
the equivalent performance compared with the original OEM-
based SMM. Namely, the ZE-SMM provides quantitatively
similar results to the SMM for the profiles for the mean ve-
locity, total turbulent kinetic energy, and streamwise compo-
nent of the GS Reynolds stress spectrum. Consequently, the
present study revealed that the conventional SGS energy trans-
port equation is not essential in realizing the preferable prop-
erties of the SMM. Although the investigation has been con-
ducted only in turbulent channel flows, the present reduction
from the OEM to the equilibrium model is expected to be valid
in other turbulent flows (for details, see Inagaki & Kobayashi,
2022).

The success of the reduction using the local equilibrium
assumption partly results from the modeling of the production
term expressed in terms of the eddy viscosity and strain rate,
which does not provide the backscatter. There is the possibil-
ity that the OEM that allows the backscatter improves the SGS
models. However, in the OEMs, the SGS energy must be pos-
itive because its square root is usually employed in the eddy
viscosity. The modeling of the SGS energy transport equation
that allows both the backscatter and positive semi-definiteness
is challenging. The local equilibrium expression is a primitive
model for the SGS energy. The present study paves the way
for the further development of the SGS modeling that requires
the model expression of SGS energy.
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