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ABSTRACT
Flow-control techniques are extensively studied in fluid

mechanics, as a means to reduce energy losses related to fric-
tion, both in fully-developed and spatially-developing flows.
These techniques typically rely on closed-loop control sys-
tems that require an accurate representation of the state of the
flow to compute the actuation. Such representation is gener-
ally difficult to obtain without perturbing the flow. For this
reason, in this work we propose a fully-convolutional neural-
network (FCN) model trained on direct-numerical-simulation
(DNS) data to predict the instantaneous state of the flow at dif-
ferent wall-normal locations using quantities measured at the
wall. Our model can take as input the heat-flux field at the
wall from a passive scalar with Prandtl number Pr = ν/α = 6
(where ν is the kinematic viscosity and α is the thermal diffu-
sivity of the scalar quantity). The heat flux can be accurately
measured also in experimental settings, paving the way for the
implementation of a non-intrusive sensing of the flow in prac-
tical applications.

INTRODUCTION
One of the possible applications of active flow control in

wall-bounded flows is to reduce the skin friction. The control

can be designed either as an open-loop or closed-loop system.
In the first case, no information is obtained from the flow with
measurements. This means that the control is prescribed inde-
pendently from the current flow state. It can be a force, intro-
duced with a periodic motion (Quadrio et al., 2009) or a de-
formation (Tomiyama & Fukagata, 2013) of the wall, or it can
be obtained through blowing and suction at the wall (Fahland
et al., 2021). In the closed-loop case, the drag is reduced by
modifying the velocity near the wall according to the changes
of the velocity within the flow field (Choi et al., 1994). It is
highly desirable to monitor the flow with non-intrusive mea-
surements. Hence, sensors are typically located at the wall
in practical applications. One of the downsides of this ap-
proach is a poor reconstruction of the flow farther from the
wall, a fact that hinders the possibility to design an accurate
control for coherent structures in that flow region. This high-
lights the need of a reliable estimation of the flow field that can
be performed, for instance, using extended proper orthogonal
decomposition (EPOD, Borée, 2003), which is equivalent to
linear stochastic estimation (LSE, Encinar & Jiménez, 2019),
or transfer functions (Sasaki et al., 2019). Recently, neural-
network models have shown excellent results in monitoring
the instantaneous state of the flow using quantities measured
at the wall in numerical simulations. For instance, convolu-
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tional neural networks (CNNs) have been used to correlate the
two wall-shear-stress components to the instantaneous wall-
normal heat flux (Kim & Lee, 2020). In that case both the
measurements and the predictions are at the same location, i.e.
at the wall. In this work, on the other hand, we consider in-
put measurements at the wall and target flow-state estimation
above the wall. The chosen network architecture is a fully-
convolutional network (FCN), conceptually similar to the one
proposed by Guastoni et al. (2021). However, other architec-
tures have been tested in the literature for the same task, e.g.
super-resolution generative adversarial networks (SR-GANs,
Güemes et al., 2021). Despite machine-learning-based con-
trol has been tested in experimental settings with promising
results (Gautier et al., 2015), it is difficult to acquire from ex-
perimental facilities the large datasets that are needed to train
neural networks models. For this reason, in this study we
perform the training of the networks using the data obtained
from numerical flow simulations. Furthermore, the networks
are trained to predict the flow using measurements that can be
obtained in experiments. Thanks to this choice, the trained
network models will be able to be fine-tuned on the experi-
mental data once they are available. In future studies, we will
use the methods developed here in the water tunnel facility of
Universidad Carlos III de Madrid coupling time-resolved IR
thermography (Raiola et al., 2017) with tomographic Particle
Image Velocimetry (Discetti & Coletti, 2018), to assess the
feasibility of deploying this prediction framework in a practi-
cal application.

DATASET
The direct numerical simulation (DNS) from which the

measurements and the target output fields are sampled is per-
formed using the pseudo-spectral code SIMSON (Chevalier
et al., 2007). While our previous work (Guastoni et al.,
2021) focused on a fully-developed flow, namely a turbulent
open channel flow, in this work we simulate a zero-pressure-
gradient (ZPG) turbulent boundary layer (TBL). The inflow
condition for the velocity is a laminar profile. A random trip
forcing is applied to trigger the transition to a turbulent bound-
ary layer. A fringe forcing is applied at the outflow in order
to achieve periodicity at the boundary, as requested by the so-
lution method. A passive scalar θ representing the tempera-
ture of the fluid is also simulated. We consider Prandtl num-
ber Pr = 6 and impose an isothermal wall boundary condition
θ |y=0 = 0.

The choice of a spatially-developing flow implies an
additional degree of complexity in the predictions with re-
spect to the previously-studied channel flow, since the fric-
tion Reynolds number Reτ (based on the boundary-layer thick-
ness and the friction velocity uτ =

√
τw/ρ , where τw is the

wall-shear stress and ρ is the fluid density) increases with the
streamwise location x within the sampled fields. The high-
est considered Reτ is 396, which is similar to the maximum
value we expect to sample in our experimental setting. We
sample the wall-shear-stress components, as well as the wall
pressure. Note that we considered a reference friction veloc-
ity at the middle of the computational domain, which implies
that the actual inner-scaled location that is actually sampled
slightly varies along the streamwise direction. However, the
variation is within ±0.1y+. Furthermore, the flux of a passive
scalar ∂θ/∂y is sampled at the wall. The velocity-fluctuation
fields (whose streamwise, wall-normal and spanwise compo-
nents are denoted u, v and w, respectively) are sampled at four
wall-normal locations: y+ = 15, 30, 50 and 100. Here the ‘+’

denotes viscous scaling, i.e. in terms of the friction velocity uτ

or the viscous length ℓ∗ = ν/uτ (where ν is the fluid kinematic
viscosity).

Note that the sampled fields include both the initial, tran-
sitional part of the flow and the final region affected by the
fringe forcing. On the other hand, the neural-network mod-
els predict only a portion of the field. Depending on the size,
we can identify two different types of samples, as shown in fig-
ure 1: full domain (FD) samples have streamwise and spanwise
lengths of xs/δ ∗

0 = 600 and zs/δ ∗
0 = 50, respectively. Here δ ∗

0
is the displacement thickness of the laminar boundary layer at
the inflow. The samples do not include the initial (x/δ ∗

0 < 200)
and the final region (800 < x/δ ∗

0 < 1000). When the stream-
wise length of the samples is reduced to xs/δ ∗

0 = 300, we refer
to them as half-domain (HD) samples. The grid points consid-
ered in the FD case are Nx,s×Nz,s = 1960×320, while for HD
they are 980×320.

In order to obtain a sufficiently large number of fields, five
different realizations of the simulation are performed using
five different trip-forcing random seeds. The training dataset
includes 7,474 samples obtained from three of the five simula-
tions. The validation dataset consists of 2,195 samples, taken
from a separate DNS to avoid unwanted correlations with the
training dataset. The test dataset is obtained from the remain-
ing simulation, it includes 1,973 samples and the overall sam-
pled time for testing is sufficient to obtain converged turbu-
lence statistics.

NEURAL-NETWORK MODEL
In this work, we consider several network architectures

for different types of predictions. Based on the quantities sam-
pled at the wall that are provided as input to the neural net-
work, three types of predictions are investigated, as summa-
rized in table 1.

Table 1. Summary of inputs and outputs for different predic-
tion types. The inputs are measured at the wall, the outputs are
sampled at a given wall-normal location.

Type Inputs Outputs

I ∂u/∂y, ∂w/∂y, p u, v, w

II ∂θ/∂y, ∂w/∂y, p u, v, w

III ∂θ/∂y u, v, w

In the first problem, a neural-network model is trained
to predict the velocity-fluctuation fields farther from the wall
using the streamwise and spanwise wall-shear-stress compo-
nents, as well as the wall-pressure fields. The predictions
of the first problem are denoted as type I. These predictions
use the same inputs and outputs as those of our previous
work (Guastoni et al., 2021). In the second problem the
streamwise wall-shear stress is substituted with the heat flux
field corresponding to the passive scalar at Pr = 6. We refer to
these predictions as type-II predictions. Finally, a third prob-
lem is considered, using only the heat-flux field at Pr = 6 as
input (type III). The latter type aims to reproduce our experi-
mental setting, in which we will be able to measure only the
wall heat-flux field.
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Figure 1. Representation of full domain (FD) and half domain (HD) in a sampled streamwise velocity-fluctuation field at y+ = 30.

All the trained models are fully-convolutional neural net-
works, meaning that the input information is processed by
a sequence of convolutional layers, but there are no fully-
connected layers at the end, as it happens for convolutional
neural networks, that are typically employed for classification
tasks on the entire input. The inputs of the FCN model are nor-
malized with the mean and standard deviation computed on the
training samples. The velocity-fluctuation fields predicted by
the FCN are scaled with the ratio of the corresponding root-
mean-squared (RMS) values and the streamwise RMS value,
following Guastoni et al. (2021). The scaled output quantities
are indicated with •̂.

FCNs allow an accurate reconstruction of the flow fields
thanks to their capability to identify simple features and to
combine them into progressively more complex ones. The
FCN used as reference (Guastoni et al., 2021) is relatively
shallow (i.e. few convolutional layers), with a high number
of kernels per layer. On the other hand, the network archi-
tectures tested in this work have a higher number of layers
with fewer kernels per layer. These modifications are designed
to enhance the compositional capabilities of the model with-
out increasing its GPU-memory footprint and computational-
training cost. Note that the output of each convolutional layer
is slightly smaller than the input, depending on the size of the
convolutional kernel (Dumoulin & Visin, 2016). When a very
high number of layers is used, the output can become signif-
icantly smaller than the input. In our work, the size of the
output is kept constant by modifying the size of the input field
according to the architecture. This is realized by sampling a
larger area in the streamwise direction and by padding peri-
odically the field in the spanwise direction. Different models
with a varying number of layers and trainable parameters are
trained in order to identify the best combination of these net-
work architecture parameters. Such comparison is performed
on type-III predictions at y+ = 30, in an effort to optimize the
network performance for its experimental use. The FCN is
trained using the Adam (Kingma & Ba, 2015) stochastic algo-
rithm to minimize the mean-squared error (MSE) of the pre-
dictions with respect to the turbulent fields sampled from the
DNS:

L(ûFCN; ûDNS) =
∑

Nx,s
i=1 ∑

Nz,s
j=1 |ûFCN(i, j)− ûDNS(i, j)|2

Nx,sNz,s
, (1)

where boldface indicates the vectors containing the three ve-
locity components and | • | represents the L2 norm. We re-
fer to the error in the individual components using L(•) for
brevity. For type-III predictions, an additional auxiliary loss
function is also considered: streamwise, spanwise wall-shear
stress and wall-pressure field are predicted by the network as

Figure 2. MSE in the predictions as a function of the number
of layers of the network for type-III predictions. The filled
square marker represents the network model used in Guastoni
et al. (2021), while the filled circle is the model proposed in
this work. These two latter models are compared in all the
subsequent analysis.

an intermediate output, in an effort to drive the internal flow
representation of the FCN towards physically-meaningful and
interpretable quantities.

RESULTS AND DISCUSSION
The quality of the network predictions is assessed using

the MSE with respect to the corresponding DNS fields and
the turbulence statistics accuracy. The pre-multiplied two-
dimensional power-spectral densities are also computed, to
assess the amount of energy reconstructed for the different
scales. The comparison of the different network architectures
is based on the MSE because it is the metric used to optimize
the network performance during training. While increasing
the number of trainable parameters in the network does not
have a clear effect on the MSE, figure 2 highlights the correla-
tion between the number layers and the network performance
for type-III predictions. The higher the number of layers, the
lower the corresponding mean-squared error in the predictions.

The network architecture trained in Guastoni et al. (2021)
and the deepest network in this work have roughly the same
number of trainable parameters, however the latter network
shows a prediction error that is about 50% lower than the for-
mer. This result suggests a higher importance of the compo-
sitional capabilities of the network over its capacity. Despite
achieving the best performance in the comparison, our deep-
est network was not selected for the subsequent analysis pri-
marily because of the low ratio between the output and input
field size. In particular, in an experimental setting, we would
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not be able to increase the size of the input fields as done in
this numerical investigation, hence a deeper network would
inevitably result in a smaller output field in which fewer tur-
bulent features are represented. In the remaining of this work,
we present the results obtained with the second best architec-
ture, which has about half of the layers than our deepest one,
allowing to maintain a more acceptable output/input size ratio,
while providing a comparable performance in terms of MSE.
Note that this network has a higher number of trainable pa-
rameters, having a higher number of kernels per layer than the
deepest network trained.

Given the network architecture, the predictions on the
full-domain and on the half-domain datasets are compared.
One of the advantages of the FCN is that the architecture does
not depend on the size of the input. Either datasets can then
be used to train the neural-network model. Despite providing
more information per sample during training, the predictions
of the model optimized on the full-domain dataset are less ac-
curate than the ones on the half-domain dataset. This can be
explained by considering that the boundary layer is a spatially-
developing flow. This means that each sample contain a range
of Reynolds numbers that need to be predicted. The smaller
the range, the more accurate the predictions. This result is en-
couraging for the future experimental applications, since the
input data that can be obtained are limited to a small interroga-
tion window (e.g. obtained from particle-image velocimetry),
with a small Reynolds-number range. Because of these ob-
servations, the prediction results in the subsequent part of the
paper will be only related to the half-domain dataset.

Once the network architecture and the dataset are cho-
sen, the model is trained three times with different random ini-
tialization in order to verify the consistency of the stochastic
optimizations. The reported results show the average perfor-
mance of the three models. When three inputs are considered
(type-I and type-II predictions), the present network is able to
reconstruct the non-linear relation between input and output
fields with a higher accuracy than the FCN proposed in Guas-
toni et al. (2021), as shown in figure 3 (type-I predictions).
The improvement is consistent across the entire range of in-
vestigated wall-normal locations. On the other hand, the per-
formance degrades in a similar way as we move farther away
from the wall. The accuracy of the present network at y+ = 50
is comparable to that of the FCN in Guastoni et al. (2021) at
y+ = 30. At y+ = 100, the MSE in the wall-normal and span-
wise directions is similar for both architectures. The accuracy
improvement is even more pronounced when considering the
predicted turbulent statistics. In short, the error is lower at all
y+ locations and even at y+ = 100, the current FCN performs
substantially better than its predecessor.

Type-II predictions represent an intermediate step to-
wards the flow estimation using only the heat flux. When
passing from type I to type II, the error is higher for all the
velocity components, however the streamwise component is
the most affected, as the heat flux at the wall is less corre-
lated to the velocity-fluctuations away from the wall than the
streamwise wall-shear stress. The percentual increment of the
MSE due to the added difficulty of the predictions is similar
for both networks, note however that the predictions from the
FCN proposed in this study were significantly more accurate
than the FCN in Guastoni et al. (2021). For this reason, the
current FCN is found to perform better across the entire range
of wall-normal locations, even for type-II predictions.

Type-III predictions are performed at two wall-normal
distances: y+ = 15 and 30. The resulting MSE is about three
times higher when compared to type-II predictions, indicat-
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Figure 3. MSE (top) and turbulence-statistics error (bottom)
obtained in type-I predictions with respect to target fields at
different wall-normal locations. The error for each velocity
component is normalized with the square of the corresponding
fluctuations intensity.

ing that information in the spanwise wall-shear stress and wall
pressure has an important role in the reconstruction of the
fields away from the wall. Note that making the use of a deeper
FCN necessary to achieve satisfactory predictions of this type,
as shown by the error comparison with Guastoni et al. (2021)
in table 2. With the use of the auxiliary loss the MSE is only

Table 2. Error comparison in Type-III predictions at y+ =

30 using the network model from Guastoni et al. (2021) and
the one proposed here. The variance of the statistical error is
computed across the different training runs.

Guastoni et al. Current FCN

L(u)/u2
RMS 0.592 0.271

L(v)/v2
RMS 0.638 0.335

L(w)/w2
RMS 0.850 0.330

ERMS(u) [%] 36.82 ± 0.67 11.87 ± 0.49

ERMS(v) [%] 39.48 ± 0.92 14.14 ± 0.93

ERMS(w) [%] 57.26 ± 1.24 14.04 ± 0.74

about 5% lower, while the predicted turbulence statistics are
20% better than when the auxiliary loss function is not used.
A sample type-III prediction at y+ = 30 using the auxiliary loss
function is shown in figure 4. From this figure, it is possible
to observe that the FCN is able to reconstruct the large-scale
features of the flow in all three velocity components starting
from the heat-flux field only. The smaller-features reconstruc-
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tion is less accurate, in particular the maximum positive and
negative fluctuations are typically underestimated. This is re-
lated to the use of the mean-squared error as loss function for
the optimization.

A more comprehensive overview of the predicted energy
at the different scales is provided by the spectra, shown in fig-
ure 5. We compare the spectra of type-II and type-III pre-
dictions at y+ = 30. The amount of reconstructed energy is
lower in type-III predictions than in type-II. Furthermore, it is
possible to observe that eliminating the spanwise wall-shear
stress and wall pressure has a higher impact on the predic-
tion of the shorter wavelengths, both in the streamwise and
spanwise direction. The accuracy reduction is more evident
in the pre-multiplied wall-normal and spanwise spectra. This
is expected, as the wall-pressure is well correlated with the
wall-normal component of the velocity and the spanwise wall-
shear stress helps to improve the prediction of the correspond-
ing velocity-fluctuation component.

CONCLUSIONS
In this work, we assessed the prediction capabilities of

a fully-convolutional network (FCN) using DNS data sam-
pled from a turbulent boundary layer flow, with a maximum
Reynolds number of Reτ = 396. We optimize the architec-
ture of the FCN in order to minimize the MSE in the pre-
dictions, while maintaining a satisfactory output/input ratio
of the field size. The resulting network yields type-III pre-
dictions at y+ = 30 with an error that is 50% lower than that
of the previously-studied architectures (Guastoni et al., 2021).
A higher number of layers determines a larger receptive field
for the network, and it enhances its compositional capabili-
ties. The prediction accuracy is proven to be more sensitive to
this parameter than the network capacity (i.e. the number of
trainable parameters). The use of alternative, yet similar net-
work architectures (e.g. ResNet by He et al. (2016) or UNet
by Ronneberger et al. (2015)) was only partially explored and
for this reason not reported, preventing a more comprehensive
analysis of the available network architectures. The use of skip
connections, present in the aforementioned architectures, can
potentially improve the network performance further, but this
assessment is left for future work. The architectural improve-
ments described here are essential to achieve a satisfactory ve-
locity field reconstruction, given the additional difficulties re-
lated to the choice of a spatially-evolving flow, and the use to
input quantities that are less informative than the ones used in
the previous studies.

After assessing the prediction capabilities of the FCN
using DNS data, future work will be devoted to testing the
neural-network model in an experimental setting. In this case,
the resolution of the measured quantities is typically lower
than that of DNS samples. To address this issue, the FCN
model should be first trained using DNS data aptly modified
to mimic experimental data and then using samples taken di-
rectly from a wind tunnel. Testing the trained networks on this
synthetic experimental data represents the next step towards
the network model deployment in an experiment.
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Figure 4. Sample result for type-III prediction at y+ = 30, obtained using the proposed FCN with auxiliary loss functions. The first
row corresponds to the DNS input heat flux for Pr = 6, normalized with the mean and standard deviation computed on the training
samples. The second and third rows show the streamwise DNS velocity-fluctuation field and the corresponding prediction obtained from
FCN, respectively. Similarly, the fourth and fifth rows represent the wall-normal velocity fluctuation of the target and predicted fields.
Finally, the sixth and seventh rows show the spanwise velocity fluctuation component of the target and predicted fields, respectively.
The velocity-fluctuation fields are scaled by the respective RMS quantities.
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