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ABSTRACT

Intense small-scale vortical structures also known as ‘fil-
aments´ or ‘worms’ have been studied in a wide range of tur-
bulent flows, mostly using DNS. In the present study, we in-
vestigate vorticity dynamics of vortex filaments at the dissipa-
tion scale in a fully resolved three-dimensional experimental
data set of a turbulent mixing flow measured at the center of
a large von Kármán mixing tank at a Reλ = 179. To avoid
arbitrariness inherent to threshold-dependent detection crite-
ria and dependence of the results on the observer, an objective
vortex detection method proposed by Haller et al. (2016) is
implemented. One thousand instantaneous 3D velocity fields
are studied. These fields were measured at random times with
a spatial resolution of 1η , where η is the Kolmogorov length
scale. About 12500 structures were detected having an aver-
age radius of 5.1η , which is similar to previous findings on
vortex filaments in HIT and turbulent jets and channels. Lo-
cal features related to the structures and global features of the
flow were investigated and compared. Structures are character-
ized by high vorticity and low strain and the vorticity vector is
predominantly aligned with the intermediate strain eigenvector
that has a positive eigenvalue on average. The vorticity vector
is predominantly oriented normally to the compressive and ex-
tensional strain eigenvectors suggesting that the structures are
quasi one-dimensional and shows that enstrophy production
inside the structures results from vortex stretching. We further
investigate the mechanisms that sustain the vortical structures
by treating them as turbulent structures embedded in a less tur-
bulent ambient flow, analogous to a turbulent flow separated
by a turbulent/nonturbulent interface from its quiescent sur-
roundings, and we analyze the entrainment/detrainment across
their boundaries. This analysis shows that the structures are
entraining ambient fluid on average in radial direction and that
this entrainment is a result of the competing effects of non-
viscous and viscous phenomena consistent with Burgers’ vor-
tex model.

Introduction/Motivation

In turbulent flows, vortical structures are defined as re-
gions of concentrated enstrophy with a life time larger than
the characteristic time scale of the flow (Dubief & Delcayre,
2000). Intense vortical structures (IVSs) at the dissipation
scale, often called worms or filaments, have shown univer-
sal features among a variety of different turbulent flows such
as homogeneous isotropic turbulence (Jiménez et al., 1993;
Jiménez & Wray, 1998), jets (Ganapathisubramani et al.,
2008; da Silva et al., 2011), channel flows (Kang et al., 2009),
stratified flows (Neamtu-Halic et al., 2021). These studies
have shown that worms or vortex filaments have a radius of
about 5η , where η = ( ν3

ε
)1/4 is the Kolmogorov length scale.

In the DNS study of Jiménez et al. (1993) it was shown that
stretching, α = ωiω jsi j/ω2, is relatively low in small-scale
vortices which indicates lack of self-amplification. The lack
of self-amplification means that the vortices are passive and
decoupled from the straining field of the flow. The worms are
sustained by the strain field of the flow but the strain field is
not affected by the presence of the worms. So, the worms are
the consequence of turbulence dynamics and not important in
evolution of the dynamics. For larger size vortices the strain
field and the vortices show a two-way interaction with each
other. The strain field is modified by the presence of the large
scale vortices and the modified strain field modifies back the
vortices. So on the contrary to small scale vortices, the large
scale vortices are dynamically important in evolution of turbu-
lence (Tsinober, 2009). Despite the many efforts to understand
the importance and interactions of vortical structures with the
surrounding flow, our understanding is still incomplete. In par-
ticular, the way vortical structures exchange mass, momentum
and vorticity with the surrounding fluid has remained obscure.
We show that fine-scale vortical structures are by no means
passive in the sense of exchange, i.e. the interact with the back-
ground flow by entraining (detraining) mass radially (axially)
and are thus not frozen to the flow or passively advected.
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In addition to the inherent difficulty in obtaining fully resolved
volumetric time-resolved measurements, there is the additional
challenge of robust identification of high enstrophy structures.
The intense vortical structures are usually detected by using
a threshold on the norm of the vorticity field or the intensity
of vorticity relative to the strain field, which are not objective
detection methods. That is, besides the dependence on a user-
dependent threshold, the results also depend on the observer,
i.e. a change of reference system will yield different structures.
In this study, we use a recent method proposed by Haller et al.
(2016) based on the vorticity deviation to objectively detect the
structures in our experimental data set. The method isolates a
coherent fluid volume, in which fluid elements complete equal
bulk material rotation relative to the mean rotation. The result-
ing coherent structures do not change with reference system
and are truly objective. Recently, the method has been suc-
cessfully applied to 3D turbulence (Neamtu-Halic et al., 2019).
However, it has not yet been used in a more fundamental HIT
set up with a moderately large Reynolds number forcing ex-
hibiting a broad range of vortex sizes.
Our aim here is to study the interaction of the worms with the
surrounding flow based on an objective detection method that
provides the boundaries of the structures and allows quanti-
fying the exchange of mass, momentum and vorticity across
them.

Description of the experimental data set
The experimental data set that is analyzed in this study

is from the scanning particle image velocimetry (PIV) mea-
surement of homogeneous turbulent flow between a pair of
counter-rotating impellers in a large von Kármán mixing tank
facility (Lawson & Dawson, 2014, 2015). A two-dimensional
sketch of the facility with its dimensions and the theoretical
flow pattern inside the tank is shown in figure 1. The facility
is a dodecagonal tank made of Perspex with 2m height and 2m
width. The diameter of the impellers is 1.6m and the vertical
distance between the two impellers is about 1.25m. The ax-
isymmetric shear generated by the revolution of the impellers
induces a secondary flow pattern because of the centrifugal
pumping effect. The superposition of the primary flow pattern
(axisymmetric shear) and the secondary flow pattern (centrifu-
gal pumping) makes homogeneous turbulence at the center of
the tank with almost zero mean velocity and high level of tur-
bulent fluctuations. The Reynolds number of the flow based
on the impeller radius ReRI = ΩIR2

I /ν is 23,000 where ΩI is
the rotational speed of the impellers, RI is the radius of the
impellers, and ν is the kinematic viscosity of the fluid. The
Reynolds number based on Taylor micro-scale of the flow is
Rλ = 179 and the Kolmogorov length scale is η = 0.926mm.
The spatial resolution of the data set is about 1η . The non-
dimensional volume of the flow is Lx/η × Ly/η × Lz/η =
135×134×25.4. In total, the data set consists of 1003 statis-
tically independent volumes with long and random separation
times between consecutive acquisitions. The detailed descrip-
tion of the volumetric scanning-PIV measurement technique
that is used to achieve the velocity fields can be found in Law-
son & Dawson (2014).

Objective Eulerian Coherent Structure defini-
tion and the detection method

To detect the fine-scale vortical structures objectively in
the flow field the definition of Objective Eulerian Coherent
Structure (OECS) proposed by Haller et al. (2016) has been
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2m
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Figure 1. Schematic of the big von Kármán mixing flow fa-
cility.

implemented. The definition of OECS is based on Instanta-
neous Vorticity Deviation (IVD) scalar field.

IV D(x, t) = |ω(x, t)−ω(t)| (1)

where ω = ∇×u is the vorticity vector and ω is the spa-
tially averaged vorticity vector at each time step. OECS is de-
fined as a nested family of level sufaces of IVD. The value of
IVD does not increase when marching outwards from the cen-
ter. The center has the maximum value of IVD and the bound-
ary is defined as the outermost convex level surface. This defi-
nition of vortical structure is observer-independent and ensures
instantaneous coherence of the rate of material bulk rotation
relative to the mean background rotation (Haller et al., 2016).
An algorithm based on the presented definition has been devel-
oped and implemented to detect the three dimensional vortical
structures. The algorithm is explained in details in Neamtu-
Halic et al. (2019).

Burgers’ vortex model
Since some features of the small-scale vortical structures

are compared to the Burgers’ vortex model, a short description
of it is provided here. The Burgers’ vortex model is an ex-
act solution of incompressible Navier-Stokes equation by as-
suming that the vorticity field is unidirectional. It means that
the vorticity field is either one dimensional or both the vortic-
ity and strain fields are axisymmetric (Saffman, 1995). Burg-
ers’ vortices are stable as their radii do not change. Vorticity
is produced by the inviscid phenomenon of vortex stretching
(ω ·∇u) inside the vortex and is diffused outward by the vis-
cous phenomenon of vorticity diffusion (ν∇2ω). The compet-
ing effects of these phenomena lead to entrainment of fluid in
radial direction into the vortex and detrainment of fluid along
the axial direction to conserve rotational energy and mass (fig-
ure 2). Since an exact solution exists for the flow of Burgers’
vortex, all the parameters related to the velocity field and ve-
locity gradient tensor can be calculated analytically.
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Figure 2. Burgers’ vortex model.

RESULTS
In figure 3 the intense vortical structures in a snapshot

of the experimental data set are shown. The black curved
lines show the center of the structures and the pink surfaces
show the boundary of each structure. In total, about 12500
structures have been detected over the 1003 snapshots of the
data set. The average radius of the structures is 5.1η (figure 4)
and were found to occupy 1.4% of the measurement volume
which is in agreement with the DNS study of Jiménez et al.
(1993).

The J-PDFs of enstrophy (ω2 = ω.ω where ω is
the vorticity vector) and dissipation (ε = 2νsi jsi j where

si j =
1
2 (

∂ui
∂x j

+
∂u j
∂xi

) is the rate of strain tensor) are calcu-
lated for the whole volume of flow (figure 5) and within
the structures (figure 6), separately. By comparing these
J-PDFs one can see a shift towards the high-vorticity and
low-strain quadrant for the points within the structures. Also,
a noticeable preference can be seen for the J-PDF within
the structures to get aligned with the diagonal line of the
enstrophy-dissipation figure. This preference shows that the
extreme events of enstrophy and dissipation scale together
inside the structures.

Further insight can be gained by considering the
alignment between the vorticity vector ω = (ω1,ω2,ω3)
and the rate-of-strain eigenvectors e = (e1,e2,e3), where
σ1 ≥ σ2 ≥ σ3 are the corresponding eigenvalues, as it affects
the vortex stretching phenomenon (production/destruction
of enstrophy, ωiω jsi j) (Tsinober, 2009). For incompressible
flows, from the continuity equation ( ∂ui

∂xi
= 0) it can be

concluded that σ1 + σ2 + σ3 = 0. This means than σ1 > 0
and σ3 < 0 everywhere in a flow field and that the value
of σ2 can be either positive or negative depending on the
value that the sum of σ1 and σ3 has (σ2 = −(σ1 +σ3)). The
alignments, cos(θi) = ei · ω

|ω| , are calculated for the whole
volume of the flow and within the structures and shown in
figure 7. For the case of the whole volume it can be seen

that the vorticity vector and the intermediate eigenvector are
well-aligned with each other. The alignment between the
vorticity vector and the compressive eigenvector was found
and shows that these two vectors are mostly perpendicular to
each other. However, the PDF of the alignment between the
vorticity vector and the extensional eigenvector showed no
preferential alignment. The preferential alignment between
the vorticity and the intermediate strain eigenvector seems to
be a universal feature of turbulent flows (Elsinga & Marusic,
2010). On the other hand, for the case of inside the structures
it can be seen that the vorticity vector is also aligned with the
intermediate eigenvector but it is normal to both extensional
and compressive eigenvectors. So, one can interpret these
structures as quasi 1-D with weak curvature because the
vorticity vectors inside them have a strong preference to be
aligned with the intermediate eigenvector and to be normal
to the rest of the eigenvectors (Tsinober, 2009). As it was
discussed earlier, the intermediate eigenvalue σ2 can take ei-
ther positive or negative values. For the case of the structures,
since the vorticity vector has a strong preference to be only
aligned with the intermediate eigenvalue the sign that σ2 takes
determines if the dominant topological phenomenon is vortex
stretching (ωiω jsi j > 0) or vortex compression (ωiω jsi j < 0).
Figure 8 shows PDFs of the three eigenvalues of the rate of
strain tensor for both the cases of whole volume and inside
the structures. The PDFs of the eigenvalues for the case of
inside the structures have wider tails compared to the whole
volume of flow. This means that these structures are intense
realization of vortex stretching/compression in the flow field.
As it is expected the value of σ1 is only positive and the value
of σ3 is only negative. For σ2 it can be seen that both negative
and positive values are probable but on average it is positive
for the both cases of whole volume and inside the structures
(⟨ σ2

⟨ω2⟩0.5 ⟩ > 0). It can be concluded that these structures are
stretched on average by the strain field of the flow.

Since these intense vortex filaments tend to be embed-
ded in a more quiescent (i.e. mostly characterized by rather
weak enstrophy) flow, we can treat the boundary of the vortex
filaments as an internal interface (Eisma et al., 2015; Ishihara
et al., 2013), analogous to the turbulent/non-turbulent interface
of free shear flows and evaluate whether they entrain and/or
detrain flow. To investigate this, a formula for calculating the
entrainment velocity, vn, derived by Holzner & Lüthi (2011) is
used (equation 2):

vn =−
2ωiω jsi j

|∇ω2|
−

ν
∂ 2ω2

∂x j∂x j

|∇ω2|
+

2ν
∂ωi
∂x j

∂ωi
∂x j

|∇ω2|
(2)

Here the entrainment velocity, vn, is defined as
vnn = us −u where us is the velocity of an isosurface element,
u is the flow velocity at that isosurface, and n = ∇ω2

|∇ω2| is the
normal vector to the isosurface. According to this definition,
when vn ≤ 0 fluid elements at the isosurface are entrained into
the structure and when vn > 0 fluid elements are detrained
out of the structure (Mistry et al., 2019). Figure 9 shows
the entrainment velocity and its components in equation 2
evaluated on the boundary of the structures. The entrainment
velocity is negative on average which means that the structures
are entraining ambient fluid on average. To conserve mass the
same amount of fluid needs to be detrained axially in order
to preserve the total volume of the vortices. Furthermore,
by comparing the different terms in the entrainment velocity
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Figure 3. Example of OECSs in a snapshot of the experimental data set. Dimensions are normalized by the Kolmogorov length scale.
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Figure 4. PDF of normalized radius of the structures.
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Figure 5. J-PDF of normalized enstrophy and dissipation for
the whole volume.

equation we can see that the average entrainment results from
a competition between inviscid and viscous effects. Figure 9
shows that local entrainment ( vn

uη
≤ 0) happens where local

vortex stretching is greater than vorticity diffusion. On the
other hand, detrainment ( vn

uη
> 0) occurs when the summation

of local effects of vorticity diffusion and dissipation are
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Figure 6. J-PDF of normalized enstrophy and dissipation for
the structures.

greater than the local vortex stretching. This behaviour is
consistent with a stable Burgers’ vortex model where the
ambient fluid is entrained to the vortex from the boundary in
radial direction, ur = −α

2 r < 0, and that the vortex remains
stable because of the balance between inviscid and viscous
phenomena acting on it.

To further investigate the importance of different physical
phenomena in the vortical structures and to compare them with
the Burgers’ vortex model, all the terms in enstrophy transport
equation (equation 3) are calculated along the radial lines of
the structures. This equation implies that the rate of change
of enstrophy (the material derivative, Dω2

Dt = ∂ω2

∂ t + u j
∂ω2

∂x j
)

desscribes a competition between inviscid vortex stretching
(2ωiω jsi j) , the viscous diffusion of enstrophy (ν ∂ 2ω2

∂x j∂x j
), and

enstrophy dissipation (−2ν
∂ωi
∂x j

∂ωi
∂x j

). Figure 10 plots the av-
eraged values of these terms conditioned on radial directions
of the structures. The terms are normalized by t3

η where

tη = ( ν3

ε
)1/2 is the Kolmogorov time scale. The horizontal

axis of the plot represents the normalized radius of the struc-
tures. For each radial line, the radial distance from the center
(r) is normalized by the local radius of the structure (R).
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Dω2

Dt
= 2ωiω jsi j +ν

∂ 2ω2

∂x j∂x j
−2ν

∂ωi

∂x j

∂ωi

∂x j
(3)

Figure 10 shows that near the center of the structures
( r

R = 0), enstrophy diffusion is more dominant than both vor-
tex stretching and enstrophy dissipation, the latter of which has
relatively small values resulting in Dω2

Dt < 0. By marching to-
wards the boundary from the center both vortex stretching and
enstrophy diffusion become weaker as dissipation gradually
increases. The rate of change of diffusion is faster than vortex
stretching which results in Dω2

Dt > 0 after r
R ≈ 0.2. Dissipa-

tion reaches a maximum near the boundary of the structures.
As r

R > 1, all the terms become constant (flat). To compare
the behaviour with Burgers’ vortex model, equivalent Burg-
ers’ vortices are considered and the same terms of the equa-
tion are calculated and plotted in figure 11. The equivalent
Burgers’ vortices are achieved by calculating stretching (α0)
and enstrophy (ω2

0 ) at the center of the structures. By know-
ing α0 and ω2

0 and using the analytical relations available for
Burgers’ vortex model all the desired terms can be calculated.
By comparing figures 10 and 11 a similar competition between
the different terms in the enstrophy transport equation can be
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Figure 9. PDFs of entrainment velocity, vn, at the boundary
of the structures and its components.
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Figure 10. Averaged enstrophy transport equation terms con-
ditioned on radial lines inside the structures.

observed although with some small changes in their magni-
tude which shows that, on average the Burgers’ vortex model
reproduces the dominant physics of the small-scale structures
quite well.

SUMMARY & CONCLUSIONS
In this study, features of small-scale vortical structures

(’worms’) in a fully resolved 3D-3C experimental data set
of homogeneous axisymmetric turbulence with an Reλ = 179
measured at at the center of a large-scale von Kármán mixing
tank are investigated. To avoid the arbitrariness in the defi-
nition of vortices (thresholding), an objective definition based
on Objective Eulerian Coherent Structure (OECS) proposed
by Haller et al. (2016) is implemented to detect the vortices
in the volumetric velocity fields. In total, 12500 vortices were
detected in 1003 volumes of the turbulent flow. The average
radius of the structures is ⟨R⟩= 5.1η that is in agreement with
⟨R⟩ ≈ 5η widely reported in the literature for DNS studies.
Small-scale vortex structures were found to occupy 1.4% of
the volume of the flow in agreement with ∼ 1% reported in
the literature from DNS. Joint PDFs of enstrophy and dissipa-
tion within the volume and conditioned inside the structures
were showed that the values of enstrophy and dissipation are
concentrated in the small-scale vortices compared to the whole
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Figure 11. Averaged enstrophy transport equation terms of
the equivalent Burgers’ vortex model conditioned on radial
lines inside the structures.

flow field and that they scale inside the structures. The align-
ment of the vorticity vector and eigenvectors of the rate of
strain tensor showed the vorticity vector has a strong tendency
to be aligned with the intermediate eigenvector and be normal
to the compressive and extensional eigenvectors as found in
previous turbulent flows. Since the average value of the inter-
mediate eigenvalue is positive (⟨σ2⟩ > 0) vortex stretching is
the dominant topological phenomenon.

To investigate the exchange of mass by the small-scale
vortices, the entrainment velocity equation was solved on the
boundary of the structures showing that they, on average, en-
train relatively ambient flow from the surroundings. The total
volume of the structures does not change in homogeneous sta-
tionary turbulence, the mass entrainment is compensated by
the mass outflow along the axial direction. It is also shown
that the local entrainment/detrainment at the boundary is the
result of a competition between inviscid and viscous phenom-
ena. This exchange of mass is accompanied with exchange
of momentum, energy, and enstrophy with the ambient fluid.
Therefore the structures are not passive in this sense. Finally,
the enstrophy transport equation conditioned on radial lines of
the vortices was studied and compared to those of equivalent
Burgers’ vortices. The results indicate that Burgers’ vortex
model on average reasonably captures the flow physics of the
vortex structures.
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Holzner, M. & Lüthi, B. 2011 Laminar superlayer at the tur-
bulence boundary. Phys Rev Lett 106 (13), 134503.

Ishihara, Takashi, Kaneda, Yukio & Hunt, Julian C. R. 2013
Thin shear layers in high reynolds number turbulence—dns
results. Flow, Turbulence and Combustion 91 (4), 895–929.
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