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ABSTRACT
Since wall-pressure fluctuations would form a

practically-robust input to a real-time active controller
of wall-bounded turbulence, it is of high practical inter-
est to study the scaling behavior of the wall-pressure–
velocity coupling. This work investigates the coupling
of the wall-pressure fluctuations with the streamwise
and wall-normal velocity fluctuations. Both the gain
(or coherence) and phase spectra of the wall-pressure–
velocity transfer kernel are assessed using a comprehen-
sive database, available from direct numerical simula-
tions of turbulent channel flow. With data spanning a
decade in friction Reynolds number Reτ ∼ 550−5200, a
1D analysis (in terms of the streamwise wavelength, λx)
reveals that the streamwise velocity and wall-pressure
are most strongly coupled at a self-similar wall-scaling
of λx/y ≈ 14. For the wall-normal velocity component,
the strongest coupling appears at approximately half
this ratio (λx/y ≈ 8.5). An analysis of the kernel’s
phase demonstrates that both the coherent fluctuations
of streamwise and wall-normal velocity obey a forward-
leaning inclination angle of α ≈ 30◦. When extending
the analysis to 2D (as a function of λx and λz), the peak-
coherence for pw and u still resides close to λx/y ≈ 14
and is reasonably symmetric around λx/λz = 2.3. The
2D coherence for pw and v peaks around λx/λz = 1.0.
Both the 2D coherence for pw and u, and pw and v,
adhere to a wall-scaling with y. Scaling behaviours
identified in this work will aid the efficacy of real-time
controllers, by for instance the implementation of data-
derived FIR filters to only control velocity structures
that are captured through wall-pressure measurements.

INTRODUCTION AND CONTEXT
Inspiration for this work was born out of practi-

cal considerations associated with the implementation of
real-time flow control of wall-bounded turbulence. Real-
time opposition control is only effective when there is
a significant degree of correlation between the grazing

velocity fluctuations (consider those as the control ‘tar-
gets’) and a set of input sensors measuring the dynamic
state of the boundary layer (Rathnasingham & Breuer,
2003; Brunton & Noack, 2015). For the case of wall-
bounded turbulence, these sensors should be integrated
within the wall itself to avoid form drag and, in this re-
gard, a wall-pressure measurement is practically-robust
and thus ideal in practise. Analyzing the statistical cou-
pling between the velocity fluctuations in the boundary
layer and the wall-pressure field is a pre-requisite to im-
plementing a control system with a high ‘observability’
(Abbassi et al., 2017; Samie et al., 2020). Our work
scrutinizes the statistical coupling, in the context of a
linear time invariant system analysis. The notation in
this paper is as follows. Coordinates x, y and z denote
the streamwise, wall-normal and spanwise directions of
the flow, and lower-case u, v, w and p represent the
Reynolds decomposed fluctuations of the three velocity
components and the static pressure, respectively. The
wall-pressure is denoted as pw. The friction Reynolds
number Reτ ≡ δuτ/ν or δ+ is the ratio of the channel
half-width δ to the viscous length scale ν/uτ .

Many works are concerned with scaling laws and
modeling attempts of pressure fluctuations in wall-
bounded turbulence (e.g., Willmarth, 1975; Farabee &
Casarella, 1991; Klewicki et al., 2008; Hwang et al.,
2009), but a direct assessment of the instantaneous or
statistical coupling between the fluctuating velocity field
and the wall-pressure is required for wall-based veloc-
ity field estimations. Though, simultaneous measure-
ments of turbulent velocities and pw have already re-
vealed characteristic wall-pressure signatures associated
with burst-sweep cycle events (Thomas & Bull, 1983).
Throughout the last decade, high-resolution mappings
of the spatio-temporal pressure-velocity correlation have
also been reported (Ghaemi & Scarano, 2013; Naka
et al., 2015), and have been extended to the spectral
domain with the aid of coherence and phase spectra
(most notably in the experimental works of Van Blit-
terswyk & Rocha, 2017; Gibeau & Ghaemi, 2021). Ex-
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Figure 1: 1D spectrograms of (a) u, (b) v and (c) p. Two clusters of solid, coloured iso-contours on (a-c)
correspond to two contour values of k+φ+

uu = [0.2; 1.2], k+φ+
vv = [0.05; 0.3] and k+φ+

pp = [0.45; 2.25], respectively,
for all Reτ cases (an increased colour intensity corresponds to an increase in Reτ ; the channel half-widths
δ+ = Reτ are indicated along the ordinate). The gray-scale contour shows a finer discretization of iso-contours
for the highest Reynolds number case only (Reτ ≈ 5200).

perimental studies are subject to the inherent challenges
associated with wall-pressure measurements, and per-
forming those over a range of Reτ in the absence of
spatial/temporal resolution effects. In addition, it is
challenging to simultaneously acquire velocity data (in a
streamwise–spanwise plane) and the wall-pressure field.
These data are required to investigate the wall-pressure–
velocity coupling as a function of the energetic scales
decomposed in their streamwise and spanwise Fourier
modes. Novel experiments can be designed to yield
2D coherence spectra (e.g., for velocity–velocity cor-
relations, Deshpande et al., 2020), but these are not
trivial to conduct at a range of Reτ without resolu-
tion effects entering the problem. We here analyse the
wall-pressure–velocity kernel using the vast amount of
high-fidelity data that is currently available from direct
numerical simulation (DNS) campaigns.

Bode plots of the scale-dependent gain (or coher-
ence) and phase for pw and u, and pw and v, are par-
ticularly useful for wall-based control. That is, a rou-
tine action for control would, for instance, involve an
estimate of the streamwise velocity component u, at a
wall-normal location ye, based on pw. When we for
now confine ourselves to the x dimension only, a lin-
ear stochastic estimate ũ(x,ye) can be generated, ei-
ther with a time (Naguib et al., 2001; Lasagna et al.,
2013) or spectral (Tinney et al., 2006; Baars et al.,
2016) approach. An estimate in the spectral domain

is denoted as Ũ(λx,ye) =HL(λx,ye)Pw(λx), where HL
is a complex-valued kernel and Ũ(λx,ye) and Pw(λx)
are the Fourier transforms of ũ(x,ye) and pw(x), re-
spectively. Note that λx = 2π/kx denotes the stream-
wise wavelength. The kernel is found from two-point
calibration data and equals the complex-valued cross-
spectrum, divided by the wall-pressure spectrum:

HL (λx) =
φupw

(λx)

φpwpw
(λx)

= |HL (λx) | · expjψ(λx), (1)

where the kernel’s phase ψ(λx) equals the phase of the
cross-spectrum. The gain is often expressed in terms of
a normalized, linear coherence with bounds of 0 and 1,

γ2
upw

(λx) = |HL (λx) |2 ·
φpwpw

(λx)

φuu (λx)
. (2)

Note that the argument ye is omitted in eqs. (1) and (2)
for brevity. Even though the u velocity component was
used above, the same can be done for v and w. And, as
shown later, the analysis can be extended to 2D (e.g.,
Encinar & Jiménez, 2019). Now this work investigates
the scaling behavior of the kernel HL, for pw and the u
and v velocities, with the aid of DNS data of turbulent
channel flow.

DIRECT NUMERICAL SIMULATION DATA
Four channel flow datasets are used and span one

decade in Reynolds number, Reτ ∼ 550 − 5200 (see ta-
ble 1 for exact values). Details on the numerical scheme,
resolution and turbulence statistics can be found in Lee
& Moser (2015, 2019). In relevance to the current work
involving pressure, the static pressure fluctuations were
obtained by solving a Poisson equation (Panton et al.,
2017). For reference, 1D spectrograms of u, v and p are
shown in figs. 1a-c, respectively. Gray scale iso-contours
correspond to the Reτ ≈ 5200 dataset only, while the
trends of how the spectrograms change with Reτ are
shown with two sets of coloured iso-contours, drawn for
all Reτ (see figure caption). The pressure spectrum re-
mains constant for y+ . 5, reflecting the wall-pressure
spectrum. For all fluctuating quantities in fig. 1 it is
evident that the total energy at a given y+ grows due
to the additional energetic scales at large λ+

x . For in-
stance, see Mathis et al. (2009) for the scaling of u-
spectrograms and Panton et al. (2017) for the scaling of
the mean-square pressure fluctuations.

Table 1: Channel DNS data (Lee & Moser, 2015).

Case name R0550 R1000 R2000 R5200

Reτ 544 1000 1995 5186

WALL-PRESSURE–VELOCITY COUPLING
Given the energy growth of the spectrograms in

fig. 1, with an increase in Reτ , it is of high interest to as-
sess the Reτ -trend in both the upw and vpw coherence.
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Figure 2: (a) 1D gain of the cross-spectrogram, computed using u and wall-pressure pw. Solid, coloured iso-
contours correspond to one contour value indicated in the figure, for all Reτ cases (an increased colour intensity
corresponds to an increase in Reτ ); the gray scale contour shows a finer discretization of iso-contours for
Reτ ≈ 5200 only. (b,c) Similar to sub-figure (a), but now for (b) the linear coherence of u and pw and (c) the
forward-leaning geometric phase angle α, as shown in fig. 4.
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Figure 3: Similar to fig. 2 but for v and pw, instead of u and pw.

First we assess the coherence in the 1D, streamwise di-
rection, since this is reminiscent of the confined view
available from typical experiments.

1D analysis in the streamwise direction

Following eq. (1), the magnitude of the complex-
valued cross-spectrum yields a first indication of the
wall-pressure–velocity coupling. From the iso-contours
of |φ+

upw
| in fig. 2a it is evident that the degree of cou-

pling grows self-similarly with an increase in Reτ : the
ridge in cross-spectral energy grows along the black solid
line, which is representative of a wall scaling (constant
λx/y= 14). This scaling is even more distinct when con-
sidering the coherence γ2

upw
in fig. 2b. Clearly, pw and

u are most strongly coupled at the self-similar scaling
of λx/y ≈ 14. This particular wall-scaling matches the
Reynolds number invariant aspect ratio of wall-attached
coherent structures of u, see Baars et al. (2017). The
ridge of coherence is relatively narrow-band and only
grows to larger viscous-scaled heights with increasing
Reynolds number, not in width. It is surprising to
note the appearance of a region of zero-coherence at
relatively large wavelengths, and at locations below the
ridge (which are in fact closer to the wall-pressure sig-
nature). This suggests that large-scale u fluctuations
in close proximity to the wall do not comprise a phase-
consistent relationship with the wall-pressure. Possibly
due to the stronger dispersive (and random) nature in
the convection of large-scale structures near the wall

(Liu & Gayme, 2020). There is a region of non-zero co-
herence obeying an outer-scaling behavior at very large
λx. This indicates that only the very large global modes

in the velocity fluctuations, spanning the entire loga-
rithmic region (del Álamo & Jiménez, 2003), leave a
coherent wall-pressure footprint.

When focusing on the kernel’s phase ψ(λx) we
convert the phase angle into a geometric inclination
angle for ease of interpretation, following α(λx) ≡
tan−1(y/∆x), where ∆x= λxψ(λx)/(2π) is the geomet-
ric phase shift. This procedure yields a geometric angle
for each wavelength λ+

x , and for each wall-normal loca-
tion y+, at which the turbulent velocity is assessed in
relation to pw. Fig. 2c shows iso-contours of constant
α(λx), for all Reτ cases. Fluctuations of u that are
most wall-pressure-coherent (residing along λx/y = 14)
lean forward with α ≈ 30◦. Moreover, structures with
higher and lower aspect ratios are less and more inclined,
respectively. Finally, a perfect collapse of the different
Reτ curves indicates Reynolds number invariant behav-
ior; this is of high practical importance when extrapo-
lating wall-pressure–velocity filters to higher Reτ flow
control experiments.

Similar to the correlation analysis of pw and u, the
analysis can be performed with considering the v fluc-
tuations instead. Findings are presented in fig. 3 and
highlight that the wall-pressure-coherent energy in v re-
sides at a smaller aspect ratio, around λx/y ≈ 8.5 (note
that the ridge of maximum coherence does not neces-
sarily correspond to the ridge of maximum energy, as is
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Figure 5: 2D spectrograms of (a) u and (b) p at one Reτ and y+, as indicated in the figure. The gray scale contour
shows 7 iso-contours ranging up to the maximum value. (c) 2D linear coherence of u and pw, for the same Reτ
and y+ as (a,b); the solid, coloured iso-contours correspond to two contour values of γ2

upw

= [0.05; 0.25].

shown by the λx/y ≈ 8.5 on fig. 1b). The v fluctuations
also consistently lean forward with the same angle as
was found for u, namely α≈ 30◦.

Observations made on the basis of figs. 2 and 3
are summarized in fig. 4. When coherent motions
are thought of as hairpins (and packets of them), the
spanwise centre is associated with a negative stream-
wise fluctuation while the v-fluctuations induced by
the vortical motions of the packet reside at a shorter
streamwise wavelength. This is reflective of the ridges
of peak-coherence for u and v at λx/y ≈ 14 and 8.5,
respectively. Mechanistically, v fluctuations induce
wall-pressure through a pressure stagnation when di-
rected towards the wall, while u fluctuations are anti-
correlated to pressure fluctuations because of the bal-
ance/exchange of pressure and momentum.

2D analysis in the streamwise–spanwise plane

A 1D spectral analysis along x lumps all spanwise
information together. In order to inspect which span-
wise scales of velocity fluctuations are coherent with the
the spanwise scales of wall-pressure, we move towards a
2D analysis in the streamwise–spanwise plane. At first
the 2D spectrograms of streamwise velocity fluctuations,
φuu (λx,λz), and pressure fluctuations, φpwpw

(λx,λz),
are shown for y+ = 80 at Reτ ≈ 5200 in figs. 5a and 5b.
When integrated out its λz dependence, the 1D spec-
tra of figs. 1a,c are obtained at y+ = 80 (for u) and at
the wall (for pw). A 2D coherence is a generalization of
eq. (2) and results in the following for the streamwise

velocity u(x,ye,z) and wall-pressure pw(x,z) (where ye
is an evaluation location for the velocity):

γ2
upw

(λx,λz) =
|φupw

(λx,λz) |2

φuu (λx,λz)φpwpw
(λx,λz)

. (3)

Note again that the ye argument of the wall-normal lo-
cation is omitted in eq. (3) for brevity. When comput-
ing the 2D coherence for the same data as for which the
2D (auto-)spectrograms were plotted in figs. 5a,b, the
coherence-contour of fig. 5c is obtained. Notably, the co-
herence only becomes significant (when taking a thresh-
old of γ2

upw
= 0.05) for λ+

x > 400, agreeing to what was
previously observed in fig. 2. More interesting is that the
peak-coherence in 2D still resides close to λx/y≈ 14 (for
fig. 5c equivalent to λ+

x = 14y+ = 1120) and is reason-
ably symmetric around λx/λz = 2.3. The latter implies
that the wall-pressure-coherent u velocity structures are
roughly twice as long as they are wide.

An important note of caution for interpreting the
coherence is that a high value is not always relevant in
terms of absolute energies (since the coherence is energy-
normalized). For instance, at (λ+

x ,λ
+
z ) = (103,104) in

fig. 5c, the coherence is just over γ2
upw

= 0.25, even
though the absolute energy in the u fluctuations is
extremely low (and not visible in the contour plot of
fig. 5a).

In order to now assess the trend of the 2D coherence
for pw and u with height and withReτ , we move towards
the representation in fig. 6 and start with fig. 6b, which
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Figure 6: 2D linear coherence of u and pw, for all Reτ cases and for three wall-normal positions, indicated in
each of the three sub-figures (a-c). Note that the wavelengths λx and λz are represented with a wall-scaling
(normalized by y). The solid, coloured iso-contours correspond to the same two contour values as were considered
in fig. 5c, γ2

upw

= [0.05; 0.25].
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Figure 7: Similar to fig. 6 but for v and pw, instead of u and pw. The solid, coloured iso-contours correspond to
two contour values of γ2

vpw

= [0.10; 0.40].

is valid for a height of y+ ≈ 80. For all cases of Reτ ,
two sets of iso-contours of the coherence are shown; the
same colour scale as in fig. 2 is adopted. For the most
dark-red case (Reτ ≈ 5200), the two iso-contours are
similar to the ones shown in fig. 5c. Similar plots can
be generated for lower y+ locations (fig. 6a for y+ ≈ 20)
and higher locations (fig. 6c for y+ ≈ 320). Since the
axes in all sub-figures are scaled with the respective y
location, a match of the iso-contours corresponds to a
self-similar scaling in y. This is the case when comparing
figs. 6a-c. Moreover, these graphs are direct evidence of
a Reynolds number invariant behaviour of the coherence
because all Reτ iso-contours collapse.

Note that when the 2D coherence analysis is re-
peated for pw and v (instead of u), the resultant assess-
ment for the scaling behavior is shown in fig. 7. Since the
iso-contours of γ2

vpw
collapse also, it can be concluded

that the 2D coherence for pw and u, and pw and v, ad-
here to a Reynolds number-invariant wall-scaling with
y. Because it was already derived in the 1D analysis
that the wall-pressure-coherent v fluctuations are half
the size of the corresponding u fluctuations, the same is
observed in the 2D coherence. While the 2D coherence
of pw and u peaks around λx/λz = 2.3, the coherence
of pw and v peaks around λx/λz = 1.0, illustrating that
the shorter streamwise extent of wall-coherent v fluc-
tuations are roughly of the same width. That is, we
can conclude that the ridge of coherence for pw and u
scales as λx : λz : y ∝ 14 : 6 : 1, while for pw and v this

scales as λx : λz : y ∝ 8.5 : 8.5 : 1.0 (note that a coher-
ence analysis for turbulent pipe flow at high Reynolds
numbers resulted in an aspect ratio of 7:1:1 for the ve-
locity fluctuations with their skin-friction footprint, see
Baidya et al., 2019). Finally, the coherence magnitude
of v is roughly a factor two higher (note the different
iso-contour between figs. 6 and 7.

CONCLUDING REMARKS
This work examined the scaling behaviour of the co-

herence between the turbulent velocity fluctuations and
the wall-pressure field. For streamwise data of u and
v (in relation to the wall-pressure pw), the strongest
coupling appears at λx/y ≈ 14 and λx/y ≈ 8.5, respec-
tively. The 2D extension of the analysis (as a function
of λx and λz) revealed that the peak-coherence for pw
and u still resides close to λx/y ≈ 14 and is reasonably
symmetric around λx/λz = 2.3. The 2D coherence for
pw and v peaks around λx/λz = 1.0. Both the 2D co-
herence for pw and u, and pw and v, adhere to a wall-
scaling with y. Statistically this can be summarized as
that the ridge of coherence for pw and u scales follow-
ing λx : λz : y ∝ 14 : 6 : 1, while for pw and v the scaling
is λx : λz : y ∝ 8.5 : 8.5 : 1.0. An analysis of the ker-
nel’s phase demonstrated that both the coherent fluctu-
ations of the streamwise and wall-normal velocity obey
a forward-leaning inclination angle of α ≈ 30◦. With
the data spanning a decade in friction Reynolds num-
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ber Reτ ∼ 550−5200 and a very good Reynolds number
invariant trend, the current work allows for an extrap-
olation of the identified scaling laws to higher Reτ con-
ditions. The scaling behaviours will therefore aid the
efficacy efficacy of real-time controllers, by for instance
the implementation of data-derived FIR filters to only
control velocity structures that are captured through
wall-pressure measurements.
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