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ABSTRACT
The temporally developing turbulent planar jet is exam-

ined starting from the fundamental conservation equations. We
demonstrate that this flow is exceptional in that its mean flow
scalings are the same for both equilibrium and non-equilibrium
dissipation scalings. We also show that the average propaga-
tion velocity of the turbulent/non-turbulent interface (TNTI)
is proportional to the global Reynolds number to a power
which is inversely related to the fractal dimension of the iso-
enstrophy surfaces which are all packed within the thin space
composing the TNTI. Using a Direct Numerical Simulation
(DNS) we confirm our theoretical predictions and show that
the fractal dimension of these iso-enstrophy surfaces decreases
from about 2.18 at the higher enstrophy values to between 2.1
and 2.05 at the lower ones. The average propagation velocity
therefore increases from the higher to the lower enstrophy val-
ues, i.e. from the TNTI’s inner, turbulent, edge to its purely
viscous outer edge, in agreement with the constant mass flux
through these inner layers.

INTRODUCTION
Turbulent shear flows are present in many natural and en-

gineering processes. The TNTI delineating their turbulent ex-
tent is a central aspect of the entrainment mechanism whereby
ambient potential fluid acquires vorticity when entrained into
the turbulent flow. Investigation of the structure of this very
thin interface and the local mechanisms driving the entrain-
ment has been the subject of various studies (Corrsin & Kistler,
1955; Turner, 1986). The advent of DNS and Particle Image
Velocimetry has brought a revival of studies of the TNTI over
the past 20 years (Reeuwijk & Holzner, 2014; da Silva et al.,
2014; Mistry et al., 2019).

Previous studies (Zhou & Vassilicos, 2017; Cafiero &
Vassilicos, 2019) have shown that the scalings of the aver-
age TNTI propagation speed in spatially developing turbulent
wakes and jets are different for different turbulence dissipation
scalings. Two different types of turbulence dissipation scalings
have been identified (Vassilicos, 2015), the non-equilibrium
dissipation scalings and the classical Taylor-Kolmogorov dis-
sipation scalings.

The aim of the present work is to establish the scalings
of the average TNTI propagation speed in temporally develop-
ing planar turbulent jets and to see how they depend on turbu-
lence dissipation. We start by obtaining a relation for the TNTI
propagation velocity by considering the fractal nature of the
interface and the generalized form of the dissipation scaling.
We then present our DNS results on the mean flow and TNTI,
and verify the relation obtained from our theoretical analysis
against our DNS.

THEORETICAL ANALYSIS
In order to gain insight into the average propagation ve-

locity vn of the interface, we use the equality between the ex-
pansion rate of the turbulent jet volume and the flux through
the TNTI,

dVJ

dt
= Svn, (1)

where S is the TNTI surface area and VJ is the volume of the
turbulent jet. Following Zhou & Vassilicos (2017), we express
dVJ/dt in terms of the jet half-width δ (t) and therefore write

dδ

dt
2LxLz ∼ Svn. (2)

Here, Lx and Lz are the domain extents in x and z direc-
tions. Taking into account the fractal character of the interface
(Sreenivasan et al., 1989; Miller & Dimotakis, 1991; Flohr &
Olivari, 1994; Mistry et al., 2016), its surface area at spatial
resolution r can be estimated as;

S(r)∼ LxLz

(
r

δ (t)

)(2−D f )

(3)

where D f is the fractal dimension of the interface (2 ≤ D f <
3). To estimate the actual surface area of the interface we need
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to estimate the smallest relevant length-scale rmin. Considering
that a surface with a finite thickness cannot fold with a radius
smaller than its thickness, the interface thickness can be used
as the minimal length scale. We assume that this length scale is
proportional to the Corrsin length-scale ηI ∼ ν/vn (Corrsin &
Kistler, 1955), where ν is the kinematic viscosity of the fluid.
We therefore arrive at

dδ

dt
∼
(

ν

vnδ

)(2−D f )

vn (4)

from eq. 2. We now need to obtain the time-evolution of the
jet half-width δ (t), in order to proceed with eq. 4 and obtain
an expression for vn.

We conduct the analysis of the temporally developing tur-
bulent jet flow starting from the conservation of mass and mo-
mentum by assuming self-similarity of turbulent profiles in
the form φ = φ0(t) f (y/`(t)) for a variable φ , where φ0(t) is
the amplitude and `(t) is the time varying length scale. The
volume flux is conserved for the temporally developing pla-
nar jet case, i.e. ∂

∂ t
∫

∞

−∞
〈u〉dy = 0, unlike spatially developing

jets. It was shown that mean flow scalings differ for differ-
ent dissipation scaling regimes by Cafiero & Vassilicos (2019)
for spatially developing planar jets. In order to investigate if
there is a similar behavior in temporally developing planar jets,
we pursue our analysis by using the turbulent kinetic energy

equation and the general dissipation scaling ε0∼
(

ReG
Re0

)m K3/2
0
δ

,
where ReG is a global Reynolds number, determined by the ini-
tial jet velocity and jet width (ReG = UJHJ/ν) and Re0(t) =
K0(t)δ (t)/ν is a local Reynolds number which varies in time.
The classical equilibrium dissipation scaling is retained for
m = 0, and m 6= 0 leads to non-equilibrium dissipation scal-
ings. The following mean flow scalings are found as a result;

u0 ∼ (UJHJ)
1/2(t− t0)−1/2, (5)

δ ∼ (UJHJ)
1/2(t− t0)1/2, (6)

where u0 is the center-plane mean flow velocity and t0 is a
virtual origin. A peculiar feature of this problem is that the
mean flow scalings are independent of the exponent m in the
dissipation relation, thus insensitive to the different dissipation
regimes. The fact that the mean flow scalings are the same for
both equilibrium and non-equilibrium dissipation scalings is
exceptional as this is not to the case in turbulent axisymmet-
ric wakes and spatially developing turbulent planar jets, where
different scalings for u0 and δ are shown to hold for different
dissipation regimes in Dairay et al. (2015); Cafiero & Vassili-
cos (2019).

From eq. 4 and eq. 6 one can obtain the following relation
for vn:

vn ∼ (UJHJ)
1/2(t− t0)−1/2Re(2−D f )/(D f−1)

G . (7)

Eq. 7 shows that the average TNTI propagation velocity
is proportional to the global Reynolds number to the power
2−D f
D f−1 = 1

D f−1 −1 which is inversely related to D f .
The scalings of the inner turbulent length scales can also

be obtained. By using the relation; η =
(
ν3/ε0

)1/4 and the
dissipation scaling relation, the Kolmogorov length scale η

can be written as;

η ∼ (UJHJ)
1/2(t− t0)1/2Re−3/4

G . (8)

As for the Taylor length scale λ , the relation ε0 ∼ νK0/λ 2 is
employed with the Townsend’s relation K0 ∼ R0 (Townsend,
1976);

λ ∼ (UJHJ)
1/2(t− t0)1/2Re−1/2

G (9)

The velocities related to these length scales can be written as
uη ∼ (UJHJ)

1/2(t − t0)−1/2Re−1/4
G and uλ ∼ (UJHJ)

1/2(t −
t0)−1/2Re−1/2

G . Comparing these inner velocity scalings with
eq. 7, it can be seen that vn has similar ReG-dependence with
uη and uλ for different values of D f , i.e. vn ∼ uη when D f =
7/3 and vn ∼ uλ when D f = 3.

SIMULATION DETAILS
A set of simulations of temporally developing planar jets

have been carried out with a pseudo-spectral solver with peri-
odic boundary conditions in all three directions. The simula-
tions were run in a domain of size (8HJ , 12HJ , 8HJ) with res-
olution 1024x1536x1024 in directions x, y and z respectively,
such that the spatial resolution is the same in all the three direc-
tions and is smaller than the Kolmogorov length scale calcu-
lated on the center-plane throughout the time evolution of the
jet as shown in the figure 1, where Tre f = HJ/(2UJ) is used
for the non-dimesionalization of time. The time integration
was carried out with a second order Runge-Kutta time step-
ping scheme. Apart from the 2/3 truncation for de-aliasing, a
filtering function which is only effective at the highest resolved
wavenumbers was also applied to obtain smooth enstrophy iso-
surfaces at the outer edge of the TNTI. This additional filter-
ing was found to be very effective for eliminating numerical
oscillations at near-zero enstrophy levels. The initial velocity
profile of the jet is (Reeuwijk & Holzner, 2014; da Silva &
Pereira, 2008);

U(y) =
UJ

2
− UJ

2
tanh

[
HJ

4θ0

(
1− 2|y|

HJ

)]
, (10)

where y = 0 is the center-plane of the planar jet and θ0 is the
initial momentum thickness. HJ/θ0 = 35 is chosen similarly to
other studies, as this value leads to a faster transition compared
to lower HJ/θ0 values when perturbed by high amplitude noise
(da Silva and Pereira, 2008). A white-noise is added on top of
the mean velocity profile and the noise is filtered by the veloc-
ity profile, thus the region outside the turbulent jet is free from
random oscillations. The amount of enstrophy added with the
white noise corresponds to 4% of the enstrophy peaks of the
mean profile.

RESULTS
Scaling of the Mean Flow

The analysis of the DNS data starts with the investigation
of the mean flow characteristics of the planar jet, in order to
determine when the jet becomes fully turbulent and the self-
similar regime is established.

The self-similar regime is the range, where the dynam-
ics of the problem evolve with a local amplitude scaling and
a local length scale, i.e. φ0(t) and `(t), so that the time de-
pendent mean profile of a variable φ can be written in the form
φ = φ0(t) f (y/`(t)) (Townsend, 1976). For the investigation of
the self-similarity of the mean flow profiles, we start by nor-
malizing the profiles by using the local length scale, jet half-
width δ (t), in figure 2a.
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Figure 1: Spatial resolution dy/η of the simulations plot-
ted versus normalized time.

The expansion of the jet can be seen in figure 2b, where
δ 2/H2

J ∼ t behavior is compatible with eq.6. Here the jet half-
width δ (t) is defined by the condition that the mean steam-
wise velocity at a given y location is half of the mean stream-
wise velocity at the center-plane, U(y= δ , t) =Uc(t)/2, where
Uc(t) = U(y = 0, t). An important feature of the temporally

(a)

(b)

Figure 2: (a)Self-similar, normalized profiles of mean
flow U , stream-wise turbulence intensity urms, Reynolds
shear stress Ruv and turbulent kinetic energy K. (b) Jet
half-width squared, δ 2/H2

J , versus time.

developing planar jet is that Reλ remains constant due to the
inverse relationship between the scalings of u0 and λ , which
also suggests that all length scales evolve identically as time
progresses. Constancy of Reλ can be seen in figure 3a and the
time evolution of the ratios λ/η and δ/λ is given in the figure

3b. The outer length scale of the problem, δ , has also the same
time dependency as λ and η .

(a)

(b)

Figure 3: (a) Time evolution of Reλ calculated at the
centre-plane (y = 0). (b) Ratios of length scales λ/η

and δ/λ throughout time.

Looking at the mean flow scalings, it is also observed that
the u0δ

UJHJ/2 ∼ 1 for all the investigated time range, attesting to
the constant volume flux throughout the time evolution of the
flow. Townsend’s relation, K0 ∼ R0 holds until T/Tre f = 80,
and after that the ratio K0/R0 starts to decrease. This is a prob-
able demarcation of boundary effects on the jet as it expands
significantly compared to the domain extent in y-direction.

Identification of the TNTI
The TNTI is a very sharp interface between the turbulent

and non-turbulent regions of the flow. Thus, a quantity related
to the turbulent flow should be used to distinguish the two flow
regimes. In this study we use the enstrophy as the TNTI de-
tection criterion, ω2(x,y,z) = ω2

th, similar to other studies in
the literature (Reeuwijk & Holzner, 2014; Zhou & Vassilicos,
2017). Unlike some other studies, various threshold values are
used to locate the different iso-surfaces constituting the TNTI.
In order to see the enstrophy values marking the TNTI, the
volume where ω2(x,y,z) > ω2

th is plotted for a wide range of
threshold values in figure 4. The plateau over a wide range
of ω2(x,y,z)th/ω2(x,y,z)re f marks the TNTI region. This
plateau forms due to the fact that the enstrophy iso-surfaces
are positioned very close to each other spatially. By picking a
threshold value, which falls inside the plateau, one can detect
the iso-surface which envelopes the turbulent jet but also the
irrotational fluid pockets which are completely engulfed into
the turbulent region. In this study, we detect these pockets,
and the iso-surfaces related to these pockets are not taken into
account. Thus, we are only left with the continuous iso-surface
that envelopes the jet from outside.

Fractal Dimension of the TNTI
An important term in the relation 7 for the mean TNTI

propagation velocity vn involves the fractal dimension of the
surface D f . D f is present in the term responsible for the Re
dependence of vn. After the detection of the 3D TNTI surface,
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Figure 4: The volume which satisfies the condition of
ω2(x,y,z)> ω2

th is plotted for a wide range of thresholds
ω2

th.

a box-counting algorithm is utilized for the calculation of its
fractal dimension. Briefly stated, the surface S is covered with
cubes with varying edge sizes r (Mandelbrot, 1982). By look-
ing at the log− log variation of the number N of boxes needed
to cover the surface, with varying box-size r, the fractal di-
mension D f is calculated for a chosen threshold value ω2

th at a
given instant. The independent parameters which D f may de-

(a)

(b)

Figure 5: (a) The number N of boxes needed to cover
the TNTI surface, versus inverse box-size 1/r plotted in
a log− log scale and (b) the local slope of the log2N -
log2(1/r).

pend on are the measurement length scale r, time T/Tre f and
the enstrophy threshold ω2

th/ω2
re f . The dependence on r is the

first to investigate. Even though the TNTI surface shows frac-
tal characteristics, it is also known that for very small scales,
diffusive processes smooth out the contortions. Thus the slope
of the log2N - log2(1/r) plot is expected to reduce to D f = 2.
Looking at figure 5a, the orange line is the slope with all the

data points included. But it is found that this way of calcula-
tion of D f , shown as D f 1 in the figure legend, leads to inac-
curate values due to the variation of the slope with r. In or-
der to find the linear region of the log2N - log21/r plot, local
slopes of the data points are calculated by fitting nine points
at a time. Linear fits are made for each set, and their slope is
plotted as the local slope at that location in figure 5b. Consid-
ering a wide range of thresholds and the time range after the
transition to turbulence of the jet, it is observed that a plateau
of the local slope is present between the scales δ and λ (as
can be observed for example from figure 5b). For the scales
r < λ the local slope reduces towards the value of 2. Thus the
average of local slope values in this region (marked in red in
figure 5b) is used for the calculation of D f , denoted as D f 2,
with the exception of the first point from the side of δ as it in-
troduces oscillations because N is not well converged for large
box sizes. Figure 6a shows D f 2 values calculated for various

(a)

(b)

Figure 6: (a) Variation of the fractal dimension through-
out the TNTI with different ω2

th/ω2
re f values and their

constancy in time. (b) a section of the TNTI, where
different iso-surfaces of ω2

th are shown on top of
log10(ω

2
th/ω2

re f ) contours. Iso-contours from cyan to
pink are ω2

th/ω2
re f = 10−6, 10−5, 10−4 and 10−3.

enstrophy thresholds for a range of times. It is observed that
the D f values remain approximately constant in time with a
very slight variation. D f is seen to vary significantly with en-
strophy thresholds. It tends to have a higher value on the turbu-
lent side of the TNTI, i.e. D f ≈ 2.18 for ω2

th/ω2
re f = 10−3 and

reduces to D f ≈ 2.085 for ω2
th/ω2

re f = 10−6. This trend can
be seen qualitatively from figure 6b, where the iso-surfaces of
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higher enstrophy values towards the inner side of the TNTI are
more contorted compared to the iso-surfaces at the outer edge.

Average Propagation Velocity of the TNTI
The average propagation velocity of the TNTI into the

non-turbulent region is obtained by using eq.7. The time
derivative of the jet half-width dδ/dt is obtained from the
mean flow profiles and the surface area S is measured by the
box-counting algorithm. The vn profiles calculated over en-
strophy thresholds are shown in figure 7a. The propagation
velocity is observed to be higher in the non-turbulent side
where ω2

th/ω2
re f takes smaller values and it is reduced towards

the higher thresholds. This is compatible with the constancy
of the flux throughout the TNTI, Q = Svn, and thus the re-
lation between the surface area and propagation velocity be-
comes S ∼ 1/vn. As the inner iso-surfaces are more con-
torted, their surface area S is higher than the outer iso-surfaces.
Figure 7b shows the TNTI propagation velocity vn normal-

(a)

(b)

Figure 7: (a) Average interface propagation velocity,
vn, normalized by uη (solid lines, left axis) and by uλ

(dashed lines, right axis) for different threshold values.
(b) vn pre-multiplied by the Re f (D f ) with same normal-
izations.

ized by the term responsible for the dependence on D f , i.e.

Re(2−D f )/(D f−1)
G in the eq. 7. vn/Re(2−D f )/(D f−1)

G remains
approximately constant for the thresholds which fall into the
enstrophy range of TNTI, which confirms the D f dependence
found with the theoretical analysis. It is observed that the con-
stancy of the normalized vn starts to deviate at the higher en-
strophy values. To better understand this, it must be remem-
bered that the Corrsin length ηI ∼ ν/vn is used as the smallest
length scale on the TNTI for obtaining eq. 7. This length
scale is obtained by assuming that it is the viscous diffusion
mechanism that drives the process of irrotational fluid packets
obtaining vorticity at the TNTI. As we go further inside the

turbulent region, other mechanisms begin to be as active as the
viscous diffusion, thus causing the deviation observed in the
figure 7b.

CONCLUSIONS AND DISCUSSION
The temporally developing planar jet has been analyzed

starting from the basic conservation equations. The evolution
of the time-developing turbulent planar jet is fundamentally
different from the evolution of its space-developing counter-
part. It is the volume flux which is being conserved throughout
the time evolution of the temporal jet. More importantly, Reλ

remains constant after the jet becomes fully turbulent. This
implies that the inner turbulent length scales evolve together in
time. In addition, the mean flow length scale, i.e. the jet half-
width, varies in a similar manner, thus all the length scales of
the problem have identical t1/2 power law evolutions in time.
The corresponding velocity scales also decay identically with
each other as t−1/2. As shown in (Cafiero & Vassilicos, 2019),
the non-equilibrium dissipation scaling leads to different scal-
ings of the mean flow than the equilibrium dissipation scaling
for spatially developing planar jets. Similar analysis has been
conducted to discover the implications of the non-equilibrium
dissipation scaling on the evolution of the temporally devel-
oping jet, but it has been found that the time evolution of the
mean flow parameters are insensitive to the turbulence dissi-
pation scalings. By considering the fractal nature of the TNTI
and the self-similarity of the turbulent jet, a relation is obtained
for the average propagation velocity of the interface vn. This
relation shows that vn is proportional to the global Reynolds
number raised to a power which is inversely related to the frac-
tal dimension of the surface. Our DNS supports this relation
and the assumptions and predictions of our theory and reveals
an interesting inner structure of the TNTI with a dependence of
the fractal dimension on iso-enstrophy levels. It is shown that
the fractal dimension D f of the enstrophy iso-surfaces vary
throughout the thickness of the TNTI. D f values are smaller at
the outer edge of the TNTI, and increase towards the turbulent
region. Thus the outer edge of the TNTI is less contorted com-
pared to the turbulent side where the surface is more irregular
and the surface is higher. The TNTI propagation velocity is
found to be higher at the outer edge and lower on the turbulent
side, which agrees with the constancy of the entrainment flux
throughout the thickness of the TNTI, Q= Svn. The vn normal-
ized by the term responsible for the D f dependence remains
approximately constant for the range of thresholds falling into
the TNTI, supporting the relation found for vn.
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