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Abstract
We explore the potential of bispectral mode decomposi-

tion (BMD) for physical discovery in jet flows. BMD is a
modal decomposition that is tailored to the extraction of flow
structures involved in triadic interactions. Large-eddy sim-
ulations (LES) of turbulent forced and unforced round jets
at Re = 50,000 and M j = 0.4 are conducted and validated
with the companion experiment at the Institut Pprime. The
comparative BMD analysis reveals that triadic interactions in
both forced and unforced jets are most prevalent in a well-
defined region near and downstream of the closure of the
potential core. A BMD analysis of far-field pressure sheds
light on the previously reported observation that difference-
interactions are more efficient radiators of jet noise than the
sum-interactions.

Introduction
The reduction of jet noise is an important objective for the

aviation community. The pioneering work by Crow & Cham-
pagne (1971) identified the presence of large-scale coherent
structures in turbulent jets, and these coherent structures or
wavepackets are the prime sources of aft-angle noise (Jordan
& Colonius, 2013). A potential strategy to reduce jet noise is to
perform closed-loop control that attenuates the acoustic radia-
tion from the wavepackets. With this objective in mind, first,
we harmonically force the jet to gain an understanding of the
alternation of dynamics in forced jets. The forcing increases
the amplitude of the wavepackets above the background tur-
bulence. Recently, the experimental closed-loop control of
turbulent jets has demonstrated the attenuation of amplified
wavepackets over a broad range of frequencies (Maia et al.,

2020, 2021b, 2022). Once a strategy is designed to control
the elevated wavepackets, it can be applied to a more realistic
scenario of an unforced jet to reduce jet noise.

Following Crow & Champagne (1971), harmonically-
forced jets has been the subject of numerous studies. The
actuation of the jet has varied over a wide range of frequen-
cies and forcing amplitudes. Most of these studies have fo-
cussed on two mechanisms that lead to the formation of co-
herent structures. One is the shear-layer mode or the Kelvin-
Helmholtz instability, the frequency at which the shear layer
rolls up into vortices. The other is the preferred mode or the
jet column mode (Hussain & Zaman, 1981), characterized by
the frequency at which the jet exhibits the greatest response to
external forcing. At low amplitudes of forcing, the jets exhibit
a linear response. As the forcing amplitude increases, it trig-
gers nonlinear interactions in jets. High levels of forcing and
the resulting nonlinear interactions of coherent structures have
rarely been explored. Raman & Rice (1991); Husain & Hus-
sain (1995); Broze & Hussain (1994); Shaabani-Ardali et al.
(2019) have investigated the nonlinear response to high am-
plitude forcing in jets, and most have focussed on initially-
laminar jets. In this work, nonlinear interactions in unforced
and forced jets are examined and compared for turbulent jets.
Here, we perform LES of unforced and forced turbulent sub-
sonic jets at a Reynolds number, Re = ρ jU jD/µ j = 50,000,
and Mach number, M = U j/c∞ = 0.4, where ρ is the density,
U the mean flow velocity, µ the dynamic viscosity, c the speed
of sound, and the subscripts j and ∞ denote the jet and free-
stream conditions. We validate our simulations with the ex-
periments performed at Institut Pprime. Following the exper-
iments, the jets are forced harmonically at a non-dimensional
frequency of St = f D/U j = 0.4, near the nozzle lip.
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Bispectral mode decomposition
In this study, we use the bispectral mode decomposition

(BMD), recently proposed by Schmidt (2020), to investigate
the triadic interactions triggered by the axisymmetric excita-
tion of the jet. BMD is a technique that can be understood
as an extension of classical bispectral analysis to multidimen-
sional and multivariate data. The bispectrum is defined as the
double Fourier transform of the third moment of a time signal.
For a time series, y(t) with zero mean, the bispectrum is

Syyy( f1, f2) =
∫ ∫

Ryyy(t1, t2)e−i2π( f1τ!+ f2τ2)dτ1dτ2, (1)

where Ryyy(τ1,τ2) = E[y(t)y(t − τ1)y(t − τ2)] is the third mo-
ment of y(t), and E[·] is the expectation operator. The bispec-
trum is a signal processing tool for one-dimensional time se-
ries which only measures the quadratic phase coupling locally.
On the contrary, BMD is a modal decomposition technique
that identifies the spatially coherent structures associated with
the triadic interactions.

For a fluctuating flow field qi = q(x, ti), where i =
1,2, · · ·nt , BMD maximizes the integrated point-wise bispec-
trum

b( fk, fl) = E
[∫

Ω

q̂∗(x, fk)◦ q̂∗(x, fl)◦ q̂(x, fk + fl)dx
]
. (2)

Here, q̂ is the temporal Fourier transform of q computed using
the Welch approach (Welch, 1967), Ω is the spatial domain of
interest, (·)∗ denotes the complex conjugate, and ◦ denotes the
Hadamard (or element-wise) product.

Next, all the Fourier realizations at frequency fk are ar-
ranged into a matrix, Q̂k =

[
q̂(1)

k , q̂(2)
k , · · · , q̂(nblk)

k

]
. The auto-

bispectral matrix is then computed as

B =
1

nblk
Q̂H

k◦lWQ̂k+l , (3)

where Q̂H
k◦l = Q̂∗

k ◦Q̂∗
l and W is the diagonal matrix containing

the spatial quadrature weights. Owing to the non-Hermitian
nature of the bispectral matrix, we obtain the complex mode
bispectrum by solving the optimization problem

λ1( fk, fl) = argmax
∣∣∣∣a∗1Ba1

a∗1a1

∣∣∣∣, (4)

for the optimal expansion coefficients a1, by determining the
numerical range of B. For further details on computing the
mode bispectrum, the reader is referred to Schmidt (2020). Fi-
nally, the bispectral modes are recovered as

φ
(1)
k+l = Q̂k+la1. (5)

Validation of LES
The experiments of the isothermal subsonic jets were per-

formed at the “JET100” low Mach number jet facility at Insti-
tut PPRIME, Poitiers, France. The experiments were carried
out for a jet Mach number M j = 0.05, and Reynolds number of
Re = 50000. The boundary layer is tripped inside the nozzle

by a carborundum strip located 2.5D upstream from the nozzle
exit. The turbulent jet is forced by eight loudspeakers that are
equally distributed around the nozzle lipline (r/D = 0.5). The
loudspeakers generate synthetic jets through an annular gap of
width 0.01D. For further details of the experimental setup, the
reader is referred to Maia et al. (2020, 2021b, 2022).

We perform large-eddy simulations of subsonic jets us-
ing the compressible flow solver “Charles” developed at Cas-
cade Technologies Brès et al. (2017, 2018). Charles solves the
spatially filtered compressible Navier–Stokes equations on un-
structured grids using a density-based finite-volume method.
The LES combines the Vreman sub-grid model (Vreman,
2004) with the wall-model by Bordat and Larsson (Bodart &
Larsson, 2012; Kawai & Larsson, 2012). The reader is referred
to Brès et al. (2017, 2018) for further details on the numerical
method and validation on jet flows.

The validation of the LES case for the present case fol-
lows the previous studies. In particular, the mesh used by Brès
et al. (2018) is modified to accommodate the new nozzle ge-
ometry and refined in the vicinity of the synthetic jet actuators.
The total grid size is 16.6 million control volumes. The LES
is conducted for the experimental Reynolds number, whereas
the Mach number is artificially increased to M j = 0.4. Effects
of compressibility are still small in this regime and the very
small time steps associated with the incompressible limit are
avoided.

The LES results for the unforced jet are compared to the
experiments in figure 1. The mean and RMS streamwise veloc-
ities on the centerline and lipline are reported in figure 1(a,c)
and 1(b,d), respectively. In figure 1(a), the mean streamwise
velocities along the centerline of the experiment and the sim-
ulation are almost indistinguishable within the first ten jet di-
ameters. The corresponding potential core length, indirectly
defined as ū(x = xc) = 0.95U j is xc ≈ 6.2. The RMS velocity
along the centerline, shown in figure 1(c), matches well for the
first six jet diameters and is underpredicted by about 10% fur-
ther downstream. The lipline RMS velocity in figure 1(d) is
slightly overpredicted near the nozzle and underpredicted with
a maximum deviation of also about 10% further downstream.
Clearly visible in the simulation results are grid transitions that
were similarly observed by Brès et al. (2018). It was confirmed
in the same work that increasing the resolution mitigates these
transitions. More importantly, Brès et al. (2018) also showed
that both nozzle-exit turbulent statistics and far-field noise pre-
dictions were accurate for the lower resolution simulations that
exhibit grid transitions.

For the forced simulation, we follow Heidt et al. (2021)
and model the effect of the loudspeaker actuators as an acous-
tic forcing in the annular region along the lip line, 0.50 ≤ r ≤
0.51, as

p(r) = 1−40000(r−0.505)2,

ux(r, t) = Ap(r)sin
(
2πSt f t

)
,

ur = uθ = 0,

ρ = ρ∞ +ρ∞ux/c∞,

p = p∞ +ρ∞c∞ux.

The amplitude, A, was manually adjusted to match the experi-
mental observations. Here, St f = 0.4 is the forcing frequency.
Figure 2 shows the power spectral densities of the centerline
streamwise velocity at x = 2 for the unforced and forced jets.
The comparison between experiment and simulation are excel-
lent for the unforced jet seen in figure 2(a). The best agreement
for the forced case was obtained for A = 0.4 and is shown in
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Figure 1. Comparison of the experiment with the LES sim-
ulations: centerline (a,c) and lipline (b,d). Profiles of the
mean (a,b) and (c,d) RMS streamwise velocity. Black dashed
line represents U/U j = 0.95 and its intersection with the mean
streamwise velocity indicates the length of the potential core.

Figure 2. Power spectral density of the streamwise velocity
at x = 2 and r = 0: (a) unforced jet; (b) forced jet. The ex-
periment (blue line) is compared to the simulations (red line).
St = St f = 0.4 corresponds to the forcing frequency (red dot-
ted line).

figure 2(b). Both the peaks at the forcing frequency and its
harmonics, as well as the number of active harmonics and the
underlying broadband spectrum, are well predicted.

Triadic interactions in forced and unforced jets
Figure 3 shows the area-integrated power spectral densi-

ties (PSD) for the five most energetic azimuthal wavenumbers
m = 0,1,2,3,4. The PSDs are integrated over the compress-
ible energy norm. The azimuthal wavenumber m = 0 contains
most of the energy for the unforced and forced jets. For the
forced jets, we observe large peaks at the forcing frequency
and its harmonics in the wavenumber m = 0. The peaks at
these harmonic frequencies indicates the presence of triadic
sum interactions. As the other wavenumbers are not affected,
we focus our analysis on the nonlinear interactions in the ax-
isymmetric component m = 0.

The mode bispectra for the unforced and forced jets are
shown in figure 4. The high-intensity regions (false red color)
in the mode bispectra signify the dominant triads that arise
from the interactions of two frequencies. Different combina-
tions of frequencies (St1,St2) interact to generate the same fre-
quency (St1+St2 = constant) along the diagonals of slope -1 in
the mode bispectrum. For the forced jet (figure 4 (b)), a grid-
like pattern is observed with vertical, horizontal, and diago-
nal lines at the forcing frequency and its harmonics with local

Figure 3. Integrated PSD of first five azimuthal wavenum-
bers, m = 0,1,2,3,4 for the two jets: (a) unforced turbulent;
(b) forced turbulent jet. PSD is integrated over the compress-
ible energy norm.

Figure 4. BMD spectra: (a) unforced turbulent; (b) forced
turbulent jet.

maxima at the intersection of these lines. These local maxima
represent the prominent triadic interactions. In particular the
two most dominant triads are (0.4,0.4,0.8) and (0.8,-0.4,0.4).
In the case of unforced jets, a broadband behavior is observed,
with the highest values concentrated at lower frequencies.

Next, we examine the mode bispectrum along different
diagonals with St3 = const to identify the strongest non-linear
interaction that result in a triad at each frequency. Figure 5
shows the mode bispectrum along the constant frequencies of
St3 = 0.0, 0.4, 0.8, and 1.2 for the two cases. The spectrum of
the unforced jet is broadband for all St3. The forced jet exhibits
distinct peaks at the forcing frequency and its harmonics. The
two most dominant triads are observed for St3 = 0.4 in figure
5(b) and St3 = 0.8 in 5(c). The first of these two triads is the
difference interaction between St1 = 2St f and St2 =−St f , i.e.,
between the second harmonic and the conjugate forcing fre-
quency. The second triad is the fundamental self-interaction,
(St f ,St f ,2St f ), that creates the second harmonic. The dips of
the forced mode bispectrum observed for St2 = 0 in figure 5(b),
(c), and (d) correspond to the relative lower values of the mode
bispectrum previously seen along the abscissa in figure 4(b).
Note that the zero-frequency bin contains unresolved low fre-
quency components due to the finite sampling frequency, and
the non-zero mode bispectrum should not be interpreted along
St2 = 0.

The BMD modes of the triad cascade including the most
significant interactions up to St1 ≤ 2St f are visualized in figure
6. The cascade starts with the mode at the forcing frequency,
φSt f +0 (left column middle row). The modes associated with
the sum interactions are shown in the first and second row, and
those associated with the difference interactions are shown in
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Figure 5. Mode bispectrum along diagonal of constant fre-
quency: (a) St3 = St1 + St2 = 0.0; (b) St3 = St1 + St2 = 0.4;
(c) St3 = St1 + St2 = 0.8; (d) St3 = St1 + St2 = 1.2. The red
dotted and dash-dotted lines denote the forcing, and conjugate
forcing frequency, respectively.

Figure 6. Bispectral modes forming a cascade of triads, start-
ing from the forcing frequency (St1,St2,St3) = (0.4,0.0,0.4),
middle-left. The real part of the streamwise velocity compo-
nent is shown.

the fourth and fifth row. The mode φSt f +0 self-interacts to gen-
erate the second harmonic, φSt f +St f . The fundamental forc-
ing mode and its second harmonic then interact to create the
third harmonic, φ2St f +St f , and so on. In the negative St2 plane,
the destructive self interaction of the forcing mode creates a
mean flow distortion mode, φSt f +−St f , with St3 = 0. Inspect-
ing the modes reveals that sum-interactions create modes with
high wavenumbers and difference-interactions create modes
with lower streamwise wavenumbers. This behaviour is in
agreement with the linear dispersion relation of these Kelvin-
Helmholtz (KH) type instability waves.

Another interesting observation is that the spatial struc-
tures of the modes along the diagonals of constant frequencies
St3 = 0.4, 0.8, 1.2 and 1.6 are very similar. As shown for
the companion experiment by Maia et al. (2021a), these sim-
ilar bispectral modes at constant St3 ̸= 0 resemble the leading
SPOD modes at each frequency. This indicates that the spatial
structures created by the triadic interactions are also the most
energetic coherent structures. Along St3 = 0, on the contrary,

Figure 7. Streamwise velocity component of the BMD
modes for the turbulent unforced (a,c,e,g) and forced jets
(b,d, f ,h) for different frequency triads: (a,b) (St f ,-St f ,0); (c,d)
(St f ,0,St f ); (e, f ) (2St f ,−St f ,St f ); (g,h) (St f ,St f ,2St f ).

Figure 8. Integral interaction maps, ∑k,l λ1(Stk,Stl)|φk◦l ◦
φk+l |: (a) unforced turbulent jet; (b) forced turbulent jet.
White solid and dashed lines outline the potential core and the
jet width defined as lines of constant ux = 0.95U j and 0.05U j,
respectively.

the streak-like structures with an increasing number of stream-
wise lobes are created by the destructive self-interactions of
the forcing mode and its harmonics.

Next, we compare the spatial structures of the BMD
modes associated with the triadic interactions for unforced
and forced turbulent jets. Figure 7 shows the streamwise
velocity components for the dominant triads at (St f ,-St f ,0),
(St f ,0,St f ), (2St f ,−St f ,St f ), and (St f ,St f ,2St f ), which corre-
spond to the mean flow deformation, fundamental instability
mode, a harmonic-fundamental difference interaction and fun-
damental self-interaction, respectively. The BMD modes re-
veal that the structures contributing to the triadic interactions
are localized to the region near the end of the potential core for
the unforced jet, whereas, for the forced jet, they are located
at a more upstream location and are concentrated in the shear
layer. This effect is more pronounced for the BMD mode of
the fundamental self-interaction triad (St f ,St f ,2St f ), which ex-
hibits a KH type wavepacket near the nozzle exit in the forced
jet.

We next seek to identify the regions where triadic in-
teractions are most active. This is achieved by summing
the weighted interaction maps over all frequency triads as
∑k,l λ1(Stk,Stl)|φk◦l ◦ φk+l |. The resulting integral interac-
tion maps are presented in figure 8 and indicate the regions
where the triadic interactions are most active. Both jets exhibit
strong triadic nonlinear interactions downstream of the poten-
tial core near the centerline. This observation is in agreement
with previous findings by Cavalieri et al. (2013) and Tissot
et al. (2017), who, in the same region, observed that linear
wavepacket models differ significantly from experiments. In
addition to this ‘natural’ occurrence of nonlinear effects, the
forced jet interaction map also reveals the presence of strong
nonlinearity in the shear layer near the nozzle exit that is di-
rectly associated with the forcing. Also observed is a shorten-
ing of the potential core and a thickening of the shear layer.
This is in agreement with the previous works by Crow &
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Figure 9. BMD modes of the pressure field for the turbulent
unforced (a,c,e,g) and forced jets (b,d, f ,h) for different fre-
quency triads: (a,b) (2St f ,−St f ,St f ); (c,d) (St f ,St f ,2St f ); (e, f )
(2St f ,St f ,3St f ); (g,h) (3St f ,St f ,4St f ).

Champagne (1971); Samimy et al. (2007), who argue that the
enhanced entrainment due to forcing leads to a widening of
the shear layer, and consequently, a contraction of the poten-
tial core.

To identify the link between the triadic interactions in the
near-field and the acoustic far-field, we perform BMD on the
pressure data using a weight matrix,

Wac(x) =
{

1 for 5 ≤ r ≤ 6,∀x ∈ Ω

0 otherwise,
(6)

that focuses on the far-field. Figure 9 shows the BMD modes
for the resultant frequencies (St3) of St=0.4 (a,b), 0.8 (c,d),
1.2 (e, f ) and 1.6 (g,h). The BMD mode corresponding to the
most dominant triad at each resultant frequency (St3) is se-
lected. The pressure components for the unforced and forced
turbulent jets are shown in figure 9 (a,c,e,g) and 9 (b,d, f ,h) re-
spectively. In case of the forced jet, (2St f ,−St f ,St f ) is the most
significant triad identified from the BMD spectra (not shown
here). This identifies as the difference-interaction between the
first harmonic and the forcing frequency and is the most signif-
icant triad. This observation is in agreement with the findings
of Sandham et al. (2006), who show that unstable waves with
difference-interactions (St3 = St1 − St2) are more efficient ra-
diators of jet noise than the sum-interactions (St3 = St1 +St2).
For the forced jet, the BMD modes exhibit beams that prop-
agate at a steeper angle as compared to the unforced jet. For
the triads (0.8, 0.4, 1.2) and (1.2, 0.4, 1.6), the unforced jet ex-
hibits directive downstream radiation, whereas for the forced
jet, we observe actuation-induced sideline noise. These side-
line radiation patterns are similar to those found by Jeun et al.
(2016) and Nekkanti & Schmidt (2021).

Summary and conclusions
LES of unforced and forced turbulent jets were performed

and validated with companion experiments. The jet is axisym-
metrically forced by blowing and suction at a frequency of
St = 0.4 and with an amplitude that correspond to the jet ve-
locity, triggering strong nonlinear interactions. The forcing
produces a purely axisymmetric response and entails signifi-
cant thickening of the shear layer and shortening of the po-
tential core. The axisymmetric component, m = 0, exhibits
peaks at the forcing frequency and its harmonics due to triadic
interactions. BMD is employed to investigate the structures
associates with these triads and their relative significance. In-

tegral interaction maps are defined to identify regions of ac-
tivity of triadic interactions. Both unforced and forced jets
exhibit strong interactions in the closure region of the poten-
tial core. This ‘natural’ region of nonlinear activity extends
over ∼ 6 jet diameters in the unforced case and over ∼ 4 in
the forced case, respectively. We speculate that the nonlin-
ear activity in that region is the reason for the discrepancy
of SPOD modes and linear resolvent (Schmidt et al., 2018)
and global modes (Schmidt et al., 2017), and similarly the dis-
crepancy between linear wavepacket models and experimental
data, also attested to nonlinearity by Cavalieri et al. (2013)
and Tissot et al. (2017). In the forced jet, strong interactions
that are associated with the large-amplitude forcing are iden-
tified in the vicinity of the actuator near the lip line. Lastly,
BMD was applied to the far-field pressure and identified the
difference-interaction between the first harmonic and the forc-
ing frequency as the most significant triad. This observation is
in agreement with the findings of Sandham et al. (2006).
Acknowledgements AN and OTS gratefully acknowledge
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