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ABSTRACT
The attached-eddy hypothesis (AEH) conjectured by

Townsend (1976) predicts asymptotic behaviours of turbu-
lence statistics in the logarithmic region in terms of self-similar
coherent motions, yet revealing such behaviours has remained
an elusive task because the proposed description is established
within the limits of asymptotically high Reynolds numbers. In
the present work, we scrutinized the self-similar behaviour of
turbulence motions contained within wall-attached structures
of streamwise velocity fluctuations (u) using the direct nu-
merical simulation dataset of turbulent boundary layer, chan-
nel, and pipe flows (Reτ ≈ 1000). The physical sizes of the
identified structures across the logarithmic region are geomet-
rically self-similar in terms of height. In addition, the two-
dimensional energy spectra of u within the self-similar struc-
tures follow a linear relationship between the streamwise and
spanwise wavelengths in the large-scale range, which is remi-
niscent of self-similarity. The present results revealed that the
asymptotic behaviors can be captured by extracting the self-
similar coherent motions in canonical wall turbulence, even at
relatively low-Reynolds-number flows. More details can be
found in Hwang et al. (2020).

INTRODUCTION
Wall turbulence is characterized by a broad range of

scales, from the viscous length scale (δν ) to the outer length
scale (δ ). The friction Reynolds number (Reτ = δ/δν ) de-
scribes such a multiscale phenomena. At extremely high Reτ ,
there is a region that is sufficiently far from the wall and far
from the outer region. This region is the so-called logarith-
mic region where the only relevant length scale is the distance
from the wall y, and the mean velocity profile follows the loga-
rithmic variation with respect to y (Millikan, 1938). Townsend
(1976) hypothesized that coherent motions in the logarithmic
region are self-similar and that their sizes are proportional to
y. Townsend’s hypothesis was further extended by Perry &
Chong (1982), who deduced the attached-eddy model. Based
on the attached-eddy model, they expected that the logarithmic
variations occur in the mean velocity and in the wall-parallel

components of turbulence intensity. The model also shows that
self-similar motions contribute to a k−1

x scaling in the one-
dimensional spectra of the streamwise velocity, where kx is
the streamwise wavenumber. The k−1

x region was predicted
by Perry & Abell (1977), who assumed that there is a spectral
overlap region where y and δ scalings hold simultaneously. In
this sense, the k−1

x region can be a consequence of the AEH
and is deemed the spectral signature of attached eddies (Perry
& Chong, 1982; Perry et al., 1986). However, although some
studies have shown empirical evidence for the existence of the
k−1

x region (Nickels et al., 2005; Vallikivi et al., 2015), it re-
mains unclear whether such scaling exists in a high-Reynolds-
number flow (Rosenberg et al., 2013; Lee & Moser, 2015; Ahn
et al., 2015; Agostini & Leschziner, 2017; Chandran et al.,
2017; Baars & Marusic, 2020).

The ambiguities in the spectral signatures of the attached
eddies are related to insufficient scale separation because the
AEH requires that the Reynolds number approaches infinity.
This means no region exists in which both y and δ scalings
are valid over the same wavenumber space, even in the high-
Reynolds-number experiments Re = O(104−5) of the afore-
mentioned studies. However, given the fact that the self-
similar energy-containing motions follow a hierarchical distri-
bution (Perry & Chong, 1982), we may expect that self-similar
motions can exist even if scale separation is insufficient. Ow-
ing to insufficient separation of scales, self-similar motions
are less statistically dominant than other coexisting motions,
which in turn leads to ambiguity of the asymptotic behaviours
in turbulent statistics.

Recently, Hwang & Sung (2018) extracted the wall-
attached structures of the streamwise velocity fluctuations (u)
in turbulent boundary layer (TBL) and found that the identi-
fied structures were self-similar in terms of their heights (ly),
directly contributing to the logarithmic variation in the stream-
wise turbulence intensity. In addition, they showed that the
population density of the identified structures was inversely
proportional to ly, reminiscent of the hierarchies of self-similar
eddies (Townsend, 1976; Perry & Chong, 1982). Moreover, in
pipe flows, the profile of the streamwise velocity reconstructed
by the superposition of the wall-attached u structures exhibits
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the logarithmic variation (Hwang & Sung, 2019). Despite ev-
idence on the self-similarity of wall-attached u structures and
their contribution to the logarithmic behaviors, their spectral
contributions and the turbulence motions contained within the
identified structures have not been revealed. Because the wall-
attached u structures are identified in instantaneous fluctuating
velocity fields, a wide range of scales is contained within the
individual structure. Therefore, spectral analysis is required to
reveal whether the large scales contained within the identified
object can be attributed to the logarithmic variation or exhibit
the spectral overlap argument proposed by Perry and cowork-
ers (Perry & Chong, 1982).

The objective of the present study is to explore the spec-
tral contribution of turbulence motions that comprise wall-
attached u clusters by computing the two-dimensional spec-
tra of u, in which the velocity signals contained within self-
similar structures are isolated. We examined the direct numer-
ical simulation (DNS) data of a fully developed turbulent chan-
nel and pipe flows, along with zero-pressure-gradient TBL at
Reτ ≈ 1000, and identify the wall-attached self-similar struc-
tures by applying universal filters in terms of height. The wall-
attached u clusters were decomposed into the buffer-layer,
self-similar, and non-self-similar structures in terms of their
height. The wall-attached self-similar structures were further
examined using the two-dimensional energy spectra to reveal
the self-similar behaviours in the logarithmic region of all
three flows. We then explored the one-dimensional stream-
wise and spanwise spectra by comparing the energy contained
in the spectral range where the energetic ridges in the two-
dimensional spectra follow a linear relationship between the
wall-parallel wavelengths.

NUMERICAL DETAILS
In this study, we analysed the DNS data of the zero-

pressure gradient TBL (Hwang & Sung, 2017; Yoon et al.,
2018) as well as the fully developed turbulent channel (Lee
et al., 2014, 2015) and pipe flows (Ahn et al., 2013, 2015).
A detailed description of the DNS can be found in the afore-
mentioned studies. The friction Reynolds numbers, defined as
the ratio of the outer length scale to the viscous length scale,
match at Reτ = uτ δ/ν ≈ 1000. Here, uτ is the friction ve-
locity, ν is the kinematic velocity, and δ is the flow thickness
(i.e. channel half-height, pipe radius, or 99% boundary layer
thickness). Throughout the present work, the superscript +
represents viscous scaling (ν/uτ and uτ ). In the present study,
x, y, and z indicate the streamwise, wall-normal, and span-
wise directions, respectively. In the pipe flow, the wall-normal
direction is defined as y = δ − r, where r denotes the radial
direction. In addition, for an analogy with z in the TBL and
channel flows, the spanwise dimension of the pipe is defined
as the arclength rθ , where θ denotes the azimuthal direction.
We define the streamwise velocity fluctuations u =U −U(y),
where U is the streamwise velocity, and the overbar denotes
the ensemble average.

We identified the clusters of u in the instantaneous flow
fields by extracting the contiguous points of the intense u re-
gion (Hwang & Sung, 2018, 2019; Han et al., 2019; Yoon
et al., 2020). In the three-dimensional flow field, the irregu-
lar shapes of the objects are defined as

u(x,y,z)> αurms(y) or u(x,y,z)>−αurms(y), (1)

where urms is the standard deviation of the streamwise veloc-
ity and α is the threshold. Individual objects are extracted
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Figure 1. The size distributions of wall-attached u structures.
(a) Mean length (⟨lx⟩) with respect to ly. (b) Mean width (⟨lz⟩)
with respect to ly.

using the connectivity rule, in which nodes are labelled among
the six orthogonal neighbours of each node satisfying (1) in
Cartesian coordinates (Moisy & Jiménez, 2004; del Álamo
et al., 2006; Lozano-Durán et al., 2012; Hwang & Sung, 2018)
and cylindrical coordinates (Hwang & Sung, 2019; Han et al.,
2019). We chose the threshold α = 1.5 for all three flows; fur-
ther discussion can be found in our previous works (Hwang
& Sung, 2018; Yoon et al., 2020). The present identification
method allows us to measure the physical length scales of indi-
vidual structures in instantaneous flow fields. Each structure is
bounded by a box of size lx × ly × lz, where the corresponding
length, height, and width are denoted by lx, ly, and lz. In the
pipe flow, lz is computed in terms of the maximum arc length
in the plane obtained by projecting each object onto the cross-
stream plane.

RESULTS AND DISCUSSION
To extract the wall-attached self-similar structures

(WASS), we examined the mean streamwise length ⟨lx⟩ and
the mean spanwise width ⟨lz⟩ at a given ly (figure 1). In fig-
ure 1(a), we can see a power-law behavior (i.e. ⟨lx⟩ ∼ l0.74

y )

over 3Re1/2
τ < ly+ < 0.6δ+ (figure 1a) in all three flows. On

the other hand, for the width of the identified structures (fig-
ure 1b), the linear relationship is observed; i.e., ⟨lz⟩ ∼ ly over

l+y > 3Re1/2
τ . Although no linear relationship exists for the

wall-attached u structures over 3Re1/2
τ ≤ l+y < 0.6δ+ in fig-

ure 1(a), the sizes of the structures are scaled with ly and
show a good agreement regardless of flow geometry. Accord-
ing to figure 1, we classified the wall-attached u structures as
three components in terms of ly: buffer-layer structures, self-
similar structures, and non-self-similar structures, defined as
l+y < 3Re1/2

τ , 3Re1/2
τ ≤ l+y < 0.6δ+, and 0.6δ ≤ l+y , respec-

tively. Here, the lower bound (= 3Re1/2
τ ) of self-similar struc-

tures corresponds to that of the logarithmic region in Marusic
et al. (2013) and Hwang & Sung (2019). The present Reynolds
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Figure 2. Premultiplied two-dimensional energy spectra Φ2D at y+ = 100,110,120, and 130: (a,b) TBL, (c,d) channel, and (e, f )
pipe. Dark to light shading indicates an increase in y. The contour level is 0.4 times each of the maxima. The dashed and solid lines
denote λx/y ∼ (λz/y)2 and λx ∼ λz, respectively. The vertical dashed line in the left column indicates λx = 12y.

number is Reτ ≈ 1000; therefore, the lower bound of the loga-
rithmic region is approximately 100 wall units (3Re1/2

τ ≈ 100),
that is, a classical scaling for the lower bound of the logarith-
mic region (Perry & Chong, 1982).

Next, we conditionally sampled u signals contained
within the bounded volume of each WASS in instantaneous
flow field (uws) to examine the spectral contributions of various
scales associated within the WASS. The u signals outside the
WASS are artifically imposed to zero (Lee et al., 2015; Hwang
et al., 2016b, 2020). The contribution of coherent motions in-
grained within WASS to the streamwise variance is explored
by computing the premultiplied two-dimensional spectrum of
uws (figure 2).

Φ
2D(kx,kz,y) = kxkz⟨ûws(kx,kz,y)û∗ws(kx,kz,y)⟩, (2)

where kx(= 2π/λx) and kz(= 2π/λz) are the streamwise and
spanwise wavenumbers, and ûws indicates the Fourier coeffi-
cient of uws and the asterisk denotes a complex conjugate.

In general, all three flows show that Φ2D scales reason-
ably well with y in the range y < λx < 10y (figure 2a,c,e)
and with δ in the range λx > δ (figure 2b,d, f ). In particu-
lar, the bounds of the constant energy distribution are aligned
along a linear relationship between the streamwise and span-
wise wavelengths (λx and λz, respectively) in the large-scale
range (12y < λx < 3–4δ ). This spectral feature is found in
all three flows indicative of the universality of the self-similar
nature of the large scales contained within WASSs. In addi-

tion, λx > 12y is consistent with the lower limit of the k−1
x

region in channel flows (Hwang, 2015), and is close to the
inner-scaling limit (λx = 14y) of self-similar motions in TBLs
over a wide range of Reτ (Baars et al., 2017). Deshpande et al.
(2020) also found the existence of linear behaviour in two-
dimensional cross spectra of wall-coherent u motions over a
similar range (i.e. λx > 15y). This shows that the WASS iden-
tified in the present study is directly related to the self-similar
behaviour in the wavenumber space.

However, the wall-attached u structures defined in the
present study (Eq.(1)) depend on the threshold value α be-
cause we identified the structures by extracting the physically
connected volumes of intense fluctuations. Therefore, we ex-
amined the influence of the threshold value over a certain range
in the vicinity of α ≈ 1.5. The threshold effect on the popu-
lation density and the sizes of the bounding box was reported
in Hwang & Sung (2018, 2019). Figure 3 shows the effect of
α on (Φ2D. Here, we plot Φ2D for TBL only to avoid any
repetition. We can see that all the contours collapse reason-
ably well regardless of α . In particular, the linear relationship
(λx λz) appears at λx > 12y, and the lower bounds align along
λx = 10λz regardless of the threshold. This result shows that
the conditionally sampled flow field uws can represent a contin-
uous range of scales related to the energy-containing motions
in the logarithmic region.

Figure 4 shows the spectral ridge of Φ2D. We determined
the spectral ridge by identifying λz, where the maximum value
of Φ2D occurs at a given λx. As seen, the spectral ridges are
found to agree reasonably well over a wide range of scales.
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Figure 3. Premultiplied two-dimensional energy spectra Φ2D

at y+ = 120 in TBL with α = 1.3,1.4,1.5,1.6, and 1.7. The
dashed and solid lines are consistent with those in figure 2(a).
The vertical dashed line indicates λx = 12y.
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Figure 4. Energetic ridges of the premultiplied two-
dimensional energy spectra Φ2D at y+ = 120. In (a), the in-
set shows the lin-lin plot of the ridge scale ratio λx/λz for the
TBL and channel data. The horizontal dashed line denotes a
constant ratio λx/λz ≈ 4.

In particular, we observed two growth rates, the power-law
behaviour λx ∼ λ 2

z (dashed line), and the linear relationship
λx ∼ λz (solid line), at relatively large scales. The transition
of the ridges from the power law to the linear law appears at
λx = 12y. This result is consistent with the variation of the
lower and upper bounds of Φ2D found in figure 2. The spec-
tral ridges become flatten for λx > 3−4δ because at this very
long λx, the spanwise wavelength λz reaches δ and the growth
of λz is restricted.

In figure 4, the linear behaviour seems to follow λx ≈ 4λz
over the range 12y < λx < 3− 4δ . Here, the inset shows the
ridge scale ratio λx/λz for the TBL and channel data. A plateau
of λx/λz ≈ 4 is clear, indicating the linear relationship. There-
fore, the range of the self-similar energetic motions ingrained
in WASS can be expressed as

12y < λx < 3−4δ , 3y < λz < 0.8−1δ . (3)

Here, the upper limit for the streamwise wavelength in Eq.
(3) is 3 − 4δ , similar to that of the criteria that distinguish
large-scale motions and very-large-scale motions (Guala et al.,
2006; Wu et al., 2012; Hwang et al., 2016a). Given that the
contours of Φ2D are restricted to below λx ≈ 3− 4δ in figure
2, this result also shows that Φ2D comprises the contribution
from the turbulence motions that include large-scale motions
and relatively smaller motions. According to Deshpande et al.
(2020), the two-dimensional spectra of wall-coherent motions
at Reτ ≈ 15000 are aligned along a linear ridge λx = 7λz,
which is slightly steeper than the proportionality λx = 4λz
found in the present work. However, the spectra reported by
Deshpande et al. (2020) includes the contributions from wall-
attached self-similar and non-self-similar motions. Given that
very large scales can contaminate self-similar behaviours of
turbulent motions (Jiménez & Hoyas, 2008; Hwang & Sung,
2018; Han et al., 2019), it would be instructive in future efforts
to examine the energetic ridges of Φ2D over a wide range of
Reτ .

CONCLUSIONS
We explored the wall-attached self-similar structures

(WASS) of u from the viewpoint of Townsend’s AEH, with
special focus on the spectral contribution of turbulence mo-
tions contained within the identified structures. We extracted
the wall-attached structures of u in the DNS data of a zero-
pressure-gradient TBL, and turbulent channel and pipe flows
at Reτ ≈ 1000 by extracting the intense u regions across the
instantaneous flow fields. Then, the wall-attached structures
of u are classified as buffer-layer, self-similar, and non-self-
similar structures with respect to the height (ly). The varia-
tions in the physical sizes of WASS show a good agreement
in all three flows as well as scale with ly. We also examined
the two-dimensional spectra of u within WASS to explore the
spectral signatures of self-similarity. Across the logarithmic
region, we found that the lower and upper bounds of the two-
dimensional spectra follow a linear relationship λx ∼ λz in the
large-scale range (λx > 12y). Moreover, the spectral ridges
exhibit λx ≈ 4λz over the range 12y < λx < 3− 4δ , showing
that only the large scales contained in WASS are self-similar.
Our results indicate that we can capture the asymptotic be-
haviours of turbulent statistics, predicted by the AEH, when
we adequately filter out contributions from coexisting non-
self-similar motions.
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