
12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan, July 19–22, 2022

MODAL DECOMPOSITION OF NON-LINEAR INTERACTIONS IN WALL
TURBULENCE

Ugur Karban
Department of Aerospace Engineering

Middle East Technical University
06800 Ankara Turkey

ukarban@metu.edu.tr

Eduardo Martini
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ABSTRACT
Coherent structures are found in many different turbulent

flows, and they are known to drive self-sustaining processes
in minimal-unit turbulence. Identifying the triadic interactions
between coherent structures can provide insights beyond what
is possible in the framework of linearised models. There are
infinite possible interactions that may generate a given struc-
ture, and thus a method to systematically study those, ranking
them in terms of their contribution, is of interest. We here
use the resolvent-based extended spectral proper orthogonal
decomposition (RESPOD) approach (Karban, U. et al. 2022
Self-similar mechanisms in wall turbulence studied using re-
solvent analysis. Journal of Fluid Mechanics 969, A36) to
identify the relevant triadic interactions for a minimal Cou-
ette flow at Reτ = 34, studying the interactions that give rise
to wall-attached structures, obtained by measuring the wall-
shear. Our analysis reveals that there are six triadic interactions
that dominate the most-energetic wall-attached structure.

1 INTRODUCTION
We investigate dominant nonlinear mechanisms in wall-

bounded turbulence. The complexity of all possible triadic in-
teractions in a turbulent flow can be reduced by focusing on
a certain quantity and eliminating all the non-relevant interac-
tions. We use the resolvent-based extended spectral proper or-
thogonal decomposition (RESPOD) (Karban et al., 2022) for
this purpose. The should aid to design reduced-order models
appropriate for the description of a given observable in a tur-
bulent flow.

We use the resolvent framework (McKeon & Sharma,
2010), where the Navier-Stokes operator linearized around the
mean can be used to link the triadic interactions and a flow
quantity of interest, which appear, respectively, as forcing and
response. Such a linear relation allows us to understand the
role of various interactions that appear in interaction maps that
measure the dominance of a given interaction with respect to a
given observable.

The method is implemented using a direct numerical sim-
ulation (DNS) of minimal Couette flow with Reτ ≈ 34, where

the spanwise wall shear is considered as the target observ-
able. In similar minimal channel configurations, Bae et al.
(2021) investigated the triadic interactions contributing to the
(α,β ) = (0,2π/Lz) mode, where α and β are streamwise and
spanwise wavenumbers, respectively, and Lz is the domain size
in z-direction. We investigate here the triadic interactions sys-
tematically extracted using RESPOD for the same mode.

The remainder of the paper is structured as follows: the
mathematical framework to extract triadic interactions associ-
ated with a measured quantity is explained in §2. The details
about the DNS database of the minimal Couette flow are pro-
vided in §3. The results about identifying the relevant triadic
interactions and the energy transfer via these interactions in
the minimal Couette flow are discussed in §4. Finally, some
concluding remarks are provided in §5.

2 EXTRACTING NONLINEAR INTERACTIONS
USING RESPOD
We consider the incompressible Navier-Stokes (N-S)

equations as,

M∂tq(x, t) =N (q(x, t)) , (1)

where q = [uvw p]⊤ is the state vector, N denotes the nonlin-
ear N-S operator for incompressible flows and the matrix M
is zero for the continuity equation and identity matrix for the
rest. Discretisation in space and linearisation around the mean,
q(x), yields

M∂tq′(x, t)−A(x)q′(x, t) = Bf(x, t), (2)

where A(x) = ∂qN|q is the linear operator obtained from the
Jacobian of N and f(x, t) denotes all the remaining nonlinear
terms, interpreted as a forcing term in the above equation with
B = M for this particular case. Without loss of generality, we
focus on parallel flow, i.e., a flow that is homogeneous in two
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directions, for instance, in x and z, with the mean flow varying
only in y. We can modify (2) to cast it in the resolvent form by
applying Fourier transforms in all homogeneous dimensions
and rearranging as,

q̂(α̃,y, β̃ , ω̃) = R(α̃,y, β̃ , ω̃)f̂(α̃,y, β̃ , ω̃), (3)

where α̃ and β̃ are the streamwise and spanwise wavenumbers,
respectively, and ω̃ is the angular frequency, the hat indicates
a Fourier transformed quantity and R(α̃,y, β̃ , ω̃) = (−iω̃M−
A(α̃,y, β̃ ))−1B is the resolvent operator. For brevity, we drop
the notation showing dependence on wavenumber and fre-
quency in what follows.

For the incompressible N-S equations, the forcing term
in (2) is given as f = u′ ·∇u′ − u′ ·∇u′. The forcing in the
wavenumber-frequency space, f̂k, is then obtained via a con-
volution,

f̂k = ∑
i

ûi ·∇ûk−i, (4)

where i = (αi,βi,ωi), and k = (αk,βk,ωk) denote
wavenumber-frequency combinations and summation
over i implies nested summation over αi, βi and ωi. Note that
(4) is valid assuming that the target triplet k contains at least
one non-zero element.

The RESPOD method, adapted from extended proper or-
thogonal decomposition (Borée, 2003; Hoarau et al., 2006),
finds, for a given ‘observed’ SPOD mode of state (response),
all correlated parts in a ‘target’ event. Here we choose the tar-
get event to be the non linear interactions, which give rise to
the forcing terms in the resolvent framework, as in Towne et al.
(2015) and Karban et al. (2022).

The SPOD mode of a measured quantity, ŷk, can be esti-
mated using the ensemble matrix of realisations, through the
eigendecomposition,

ŶH
k WŶk = Θ̂ΘΘkΛΛΛkΘ̂ΘΘ

H
k , (5)

and the SPOD modes are obtained from Θ̂ΘΘk as,

ΨΨΨk = ŶkΘ̂ΘΘkΛΛΛ
−1/2
k , (6)

where Ŷk ≜ [ŷk(1)ŷk(2) · · · ŷk(P)] denotes the ensemble matrix
for different realisations of ŷk with P being the total number of
realisations, ΨΨΨk and ΛΛΛk are SPOD modes and their associated
eigenvalues, respectively (see Towne et al. (2018)), and W is
a positive-definite matrix of quadrature gains along y, which is
discretised.

In Karban et al. (2022), it is shown that this coefficient
matrix Θ̂ΘΘk can be used to extract the part in the forcing that is
correlated with the observed SPOD mode as,

χχχk = F̂kΘ̂ΘΘkΛΛΛ
−1/2
k , (7)

where, F̂k is the ensemble matrix of f̂k. The RESPOD forcing
mode χχχk satisfies,

ΨΨΨk = Rkχχχk. (8)

Given the expansion in (4), χχχk can be decomposed as,

χχχk = ∑
i

ΓΓΓi,k−i ≜ ∑
i

Ûi∇Ûk−iΘ̂ΘΘkΛΛΛ
−1/2
k , (9)

where Û denotes the ensemble matrix of û. We define the over-
all energy of a flow structure, ξξξ , as,

∥ξξξ∥2 = ε{ξξξ
HWξξξ}, (10)

where the superscript H indicates Hermitian transpose, and
ε{·} denotes the expectation operator. In what follows, ε{·}
corresponds to time-averaging for time-dependent structures,
and to ensemble averaging for Fourier realisations in fre-
quency space. The energy of ΓΓΓi,k−i, denoted by ∥ΓΓΓi,k−i∥2,
for all i shows the correlation map of the nonlinear interac-
tions related to the observed SPOD mode, ΨΨΨk. This includes
the ‘silent’ correlations (Karban et al., 2022). One can ex-
clude the effect of the silent-but-correlated part by investigat-
ing ∥RkΓΓΓi,k−i∥2. Equation (8) implies that such a map indi-
cates the contribution of different nonlinear interactions to a
given SPOD mode of the measured state.

3 DETAILS OF THE DNS OF THE COUETTE
FLOW
The use of RESPOD for detection of ‘important’ non-

linear interactions associated with a specific measurement is
tested on a minimal Couette flow, similar to that investigated
in Nogueira et al. (2021). The simulations are performed
using ‘ChannelFlow’ code, a pseudo-spectral incompressible
flow solver using a Fourier-Chebyshev discretisation in the
wall-parallel and wall-normal directions, respectively (see
www.channelflow.ch for details). The dimensions of the mini-
mal box are (Lx,Ly,Lz) = (1.75πh,2h,1.2πh), where the sub-
scripts x, y and z denote the streamwise, wall-normal and span-
wise directions, and h is the channel half-height. The domain
was discretised as (nx,ny,nz) = (32,65,32) with a dealiasing
factor of 3/2 in the wall-parallel directions. The channel walls
move with wall velocity, ±Uw yielding a Reynolds number,
Re = 400 based on Uw and h, which corresponds to a fric-
tion Reynolds number, Reτ ≈ 34. The flow data was stored,
once the initial transients disappeared, for 300 convective units
with a sampling rate, ∆t = 0.1. Temporal data is transformed
into frequency space using blocks of 1024 time steps with
50% overlapping and using the exponential windowing func-
tion given in Martini et al. (2019) with n = 2.

Figure 1 presents the profiles for the mean and the root-
mean-square (RMS) of the velocity components, u, v and w in
the streamwise, wall-normal and spanwise directions, respec-
tively, along the wall-normal direction, y. We see that the mean
flow is deviated from the laminar solution given by −(y− 1)
due to nonlinear interactions between turbulent fluctuations.
The RMS plots indicate that the fluctuations in u peak around
y = 1.5 and y = 0.5. A similar but smaller double-peak struc-
ture is seen in the RMS of w with the peaks occurring at the
same wall-normal positions. The RMS of v peaks around the
center at an amplitude slightly less than that of w.

We choose wall shear fluctuations in the spanwise direc-
tion, τz ≜ ∂zu′|y={−1,1} at both upper and lower walls as our
observable. Spanwise wall shear was used to extract self-
similar wall-attached structures in a turbulent channel in Kar-
ban et al. (2022). Here, we use it simply to have a low-rank
representation of the flow, associated with this quantity.
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Figure 1. Mean (a) and the RMS (b) profiles of the velocity
components, u (black solid), v (red dashed) and w (blue dash-
dotted) along the wall-normal direction.

Figure 2. a) Energy of flow structures at different wavenum-
ber pairs averaged over time. b) Ratio of the average energy
of the wall-attached structures to that of the wall-attached and
-detached structures added together.

For simpler notation, wavenumbers will be presented in
integers defined as α = α̃Lx/2π and β = β̃Lz/2π . Simi-
larly, mode frequencies will be presented in integer bins de-
noted by ω = ω̃NF/ fs, ranging in [−NF/2,NF/2−1], where
NF = 1024 is the number of temporal points used for taking
the Fourier transform (FT) and fs ≜ 1/∆t is the sampling rate
of the database.

Figure 2 shows the time-averaged energy contained in
each wavenumber pair together with the ratio of the time-
averaged energy of the wall-attached structures to the entire
turbulent fluctuations at each wavenumber pair. We see that
the mode pair (α,β ) = (0,1), related to streaks and rolls span-
ning the entire computational domain, contains the most of
the fluctuation energy (∼75%) while the modes (±1,0) and
(0,2) contains slightly less than 5% of the total energy and
all the other mode pairs contain less than 2%. The energy of
the wall-attached part of the state, denoted by qa, of the mode
(0,1) is around 80% of its total energy. Therefore, the coher-
ent structures correlated with the spanwise wall-shear can be
said to constitute a good low-rank representative of the flow
at this wavenumber pair. A similar case is observed for the
modes (0,±1) while for the mode (0,2), the energy ratio of the
wall-attached part is around 15%.

Figure 3. PSDs of q̂(0,1) (blue), q̂(0,2) (orange), q̂(1,0) (yel-
low) and q̂(1,1) (violet) integrated over the wall-normal direc-
tion.

Figure 4. PSDs of q̂(0,{1,3}) (black; solid, dashed, dash-
dotted, respectively), and q̂(1,{0,3}) (red; solid, dashed, dash-
dotted, dotted, respectively) integrated over the wall-normal
direction and normalised with respect to the peak value of each
mode.

Figure 3 shows the power spectral densities (PSD) inte-
grated along the wall-normal direction for the modes (α,β ) =
(0,1), (0,2), (1,0) and (1,1). Although the mode (α,β )= (1,1)
is energy-wise insignificant, it plays a critical role for transfer
of energy to (α,β ) = (0,1) mode, as will be shown later, and
hence is included here. We see that the streamwise-constant
modes peak around the zero frequency while the (1,0) and
(1,1) modes have their peak around ω̃ ≈ 0.1 (ω = 8). The
shape of the spectra is observed to be similar for the modes
that have the same streamwise wavenumber. This trend can be
more clearly seen in figure 4, where the integrated PSDs nor-
malised with respect to the peak value are plotted for different
modes. We see two different families of PSD distributions for
the two streamwise wavenumbers, α = 0 and α = 1, respec-
tively.

We now focus on the most energetic mode (α,β ) = (0,1)
at its peak-energy frequency, ω = 0. The wall-attached re-
sponse and forcing modes are shown in figure 5. The re-
sponse field consists of streaks and streamwise vortices. Given
that the upper and lower walls have positive and negative ve-
locities, respectively, the phase relation between streaks and
the streamwise vortices is reminiscent of lift-up mechanism
(Brandt, 2014). This is further supported regarding the as-
sociated forcing mode. At the spanwise positions where the
streamwise vortices are located, the forcing is mainly located
near the walls aligned with the y-direction, causing a moment
to generate the streamwise vortices. These vortices then gen-
erate streaks by carrying the high- and low-velocity structure
near the upper and lower walls, respectively, towards the chan-
nel center. Note that the forcing component in the streamwise
direction is indeed in opposite phase to the streaks seen in
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Figure 5. Wall-attached part of the velocity (a) and the asso-
ciated forcing (b) reconstructed in the y-z plane for the mode
(α,β ,ω) = (0,1,0). The color plot indicates the streamwise
component and the arrows show the spanwise and wall-normal
components.

the response. This indicates that the streaks are generated by
the lift-up mechanism despite the counteracting effect of the
streamwise forcing, as previously reported by Nogueira et al.
(2021). The response generation at this triplet can therefore be
considered suboptimal.

4 NONLINEAR INTERACTIONS IN THE MINI-
MAL COUETTE FLOW

4.1 Extracting important triadic interactions
The interaction maps obtained by computing via (10) the

energy associated with a nonlinear interaction contributing to
the target mode, k = (αk,βk,ωk) = (0,1,0) are shown in fig-
ure 6. Different columns compares the maps ∥ûi∇ûk−i∥2,
∥ΓΓΓi,k−i∥2 and ∥RkΓΓΓi,k−i∥2, which correspond to the direct tri-
adic interactions, the wall-correlated triadic interactions, and
the wall-correlated triadic interactions filtered by the resol-
vent operator, respectively. Note that only the triplet i =
(αi,βi,ωi) is shown, where for each i, there exists a k− i
yielding k = (0,1,0). We see that the interaction between
(0,−1,0) and its complementary, (0,2,0), is dominant in all
three maps, indicating that the interaction is large in ampli-
tude, highly correlated to the target mode, and generates the
response with the largest amplitude. We also observe large am-
plitude for the interaction (0,2,0)+(0,−1,0), which involves
the same structures with the previous one, but with the gradi-
ent operator acting on the (0,−1,0) mode. The interactions
(±1,1,0) + (∓1,0,0), although not yielding a large forcing
component, are seen to be present in the response map, imply-
ing the efficiency of these modes in driving the observable.

To investigate the overall contribution to the target mode
(0,1,0) via all the triadic interactions associated with a
given wavenumber pair (αi,βi), we define the forcing mode,
Γ̌ΓΓi,k−i obtained by integrating ΓΓΓi,k−i over the frequency in-
dex, ωi, and compute its response via RkΓ̌ΓΓi,k−i. The inter-
action map ∥RkΓ̌ΓΓi,k−i∥2 is plotted in figure 7, which shows
that the response generation is dominated by six interac-

Figure 6. Amplitude maps of ∥ui∇uk−i∥2 (top), ∥ΓΓΓi,k−i∥2

(middle), and ∥RΓΓΓi,k−i∥2 (bottom) obtained at ωi = 0 (left),
ωi = 4 (center) and ωi = 8 (right), for the target mode k =

(αk,βk,ωk) = (0,1,0). Only the modes i are shown while the
complementary modes k− i are selected to yield k = (0,1,0).

Figure 7. a) Amplitude map of the response generated by
the wall-correlated interactions at all frequencies added to-
gether. b) The map of normalised inner product between the
overall response and the response with contribution of a sin-
gle interaction masked, computed at different wavenumber
pairs used for masking. The target mode for both maps is
(αk,βk,ωk) = (0,1,0).

tions: two streamwise-constant, which are (0,{−1,2}) +
(0,{2,−1}), and four streamwise-periodic over Lx, which are
(±1,{0,1}) + (∓1,{1,0}). Note that here and in what fol-
lows, we use curly brackets for short hand notation of multiple
modes. For instance, (0,{−1,2}) denotes the modes (0,−1)
and (0,2).

To understand whether a given interaction has a destruc-
tive or constructive effect on the response, instead of comput-
ing its individual response, we calculate the overall response
with that particular interaction masked, i.e., its contribution is
not included in the response. We denote this masked wall-
attached response as q̂−

a and investigate the change in the re-
sponse energy due to this masking by computing the inner
product,

(q̂−
a , q̂a)≜ ε{q̂−

a
HWq̂a}. (11)

An interaction map is obtained obtained by calculating (11)
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Figure 8. Velocity field corresponding to the wall-attached
structure (αk,βk,ωk) = (0,1,0) in the y-z plane. Top-
left: the entire response; top-right: the response obtained
by masking the interactions between the modes (αi,βi) =

(0,{−1,2}) and their complementary modes; bottom-left: the
response obtained by masking the interactions between the
modes (αi,βi)= (±1,{0,1}) and their complementary modes;
bottom-right: the response obtained by masking the inter-
actions between the modes (αi,βi) = (0,{−1,2}) and their
complementary modes as well as the interactions between the
modes (αi,βi)= (±1,{0,1}) and their complementary modes.

by individually masking each wavenumber pair and normal-
ising the result with ∥q̂a∥2 as shown in figure 7-b. The anal-
ysis reveals that masking the contributions from the interac-
tions (0,{−1,2}) + (0,{2,−1}) increases the response en-
ergy, implying a destructive interference between these inter-
actions and the remaining ones. Masking the contributions
from the interactions (±1,{0,1})+ (∓1,{1,0}), on the other
hand, causes the response energy to decrease, implying that
these interactions have a constructive effect on the response.

The effect of these masking operations on the response
field is shown in figure 8. We see that masking the inter-
actions (0,{−1,2}) + (0,{2,−1}) mainly affects the streaks
causing an increase in their amplitude, while the stream-
wise vortex remains nearly unchanged. Masking the inter-
actions (±1,{0,1}) + (∓1,{1,0}), almost completely elimi-
nates the streamwise vortices, which also causes the lift-up
effect to be eliminated. This results in streaks with smaller
amplitude and reversed phase. This result is consistent with
the idea of a self-sustaining process in wall turbulence, with
streamwise vortices excited by non-linear interactions involv-
ing waves with non-zero α (Hamilton et al., 1995; Hall &
Sherwin, 2010). Remember that in the RESPOD forcing
mode shown in figure 5, the streamwise component counter-
acts the lift-up mechanism forced by the spanwise compo-
nents. These results, when combined, imply that the stream-
wise and spanwise components in the RESPOD forcing mode,
χχχk, are mainly constructed by the nonlinear interaction groups
(0,{−1,2})+(0,{2,−1}) and (±1,{0,1})+(∓1,{1,0}), re-
spectively. Masking (±1,{0,1}) + (∓1,{1,0}) causes the
lift-up mechanism, which is an efficient means to generate
streaks via streamwise vortices, to disappear. The remain-
ing streamwise component in χχχk is mainly constructed by
(0,{−1,2})+(0,{2,−1}) and generates streaks with negative
phase, reducing the amplitude of the streaks generated by the
lift-up mechanism. Masking all six modes eliminates almost
entirely the response as seen in figure 8.

Figure 9. Production (left), dissipation (center), and nonlin-
ear transfer (right) of the spectral turbulent kinetic energy for
different wavenumber pairs. Both the size and the color inten-
sity of the markers indicate amplitude.

4.2 Energy transfer via triadic interactions
The interaction map shown in figure 7-b can also be inter-

preted in terms of energy exchange between different modes
via nonlinear interactions. Symon et al. (2021) investigated,
by employing the spectral form of the transport equation of tur-
bulent kinetic energy (TKE), the overall relation between pro-
duction, dissipation and the transfer of energy for individual
wavenumber pairs in parallel stationary turbulent flows. The
spectral TKE equation is given in indicial notation as,

∂ Ê
∂ t

=−
∫ 2

0

∂u
∂y

û∗v̂dy− 1
Re

∫ 2

0

∂ ûm

∂xn

∂ û∗m
∂xn

dy−
∫ 2

0
û∗m f̂mdy,

(12)

where the hat in this equation denotes, by abuse of notation,
Fourier transformed quantities in the stremwise and spanwise
directions, Ê is the spectral TKE, the superscript * denotes
complex conjugate, m and n denote that the vector indices, f̂m
is the mth component of the forcing vector (see Symon et al.
(2021) for derivation of (12)). Here, we assume that the Cou-
ette flow is stationary in the time interval we investigate, which
renders

∂ Ê
∂ t

= 0. (13)

The three terms on the right hand side of (12) correspond to
the production, dissipation and nonlinear transfer of the tur-
bulent kinetic energy, which, thanks to (13), sum up to zero
for a given wavenumber pair. The contributions of production,
dissipation and nonlinear transfer to the energy balance for dif-
ferent wavenumber pairs are illustrated in figure 9. We see that
the (0,1) mode draws the most energy from the mean flow to
produce TKE, and is the only mode to transfer this energy to
other modes via nonlinear transfer. All the modes are seen to
lose energy via dissipation as expected.

The analysis done by computing (11), as a complemen-
tary tool to the energy balance analysis discussed above, pro-
vides information about the transfer of energy between indi-
vidual modes. A red square in the interaction map shown
in figure 7-b implies that the target mode is losing energy
via the associated nonlinear interaction, while a blue spot in-
dicates the opposite. One can investigate interaction maps
for different target modes to understand the paths of energy
transfer among different modes. In figure 10, we show the
same interaction map given in figure 7-b for the target modes
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Figure 10. The same map with figure 7-b obtained for the tar-
get modes (αk,βk,ωk) = (0,2,0) (a), (1,0,8) (b) and (1,1,8)
(c).

(αk,βk,ωk) = (0,2,0), (1,0,8) and (1,1,8). Note that the fre-
quency index for each target mode is selected as the peak-
energy containing frequency for the interaction maps be a bet-
ter representative of the energy transfer in the corresponding
wavenumber pair. We seen in figure 10 that all three tar-
get modes receive energy from the interactions involving the
(0,1) mode. This is expected since the (0,1) mode receives the
largest energy from the mean flow, similar to the cases shown
in Symon et al. (2021), and distributes them into other modes
via nonlinear transfer. Comparing figures 7-b and 10-a reveals
that the energy transfer between the modes (0,1) and (0,2) is
one way, going from (0,1) to (0,2), which, when blocked, in-
creases the energy in the mode (0,1) and decreases that in (0,2).
The energy transfer between (0,1) and (1,1), on the other hand,
is two way, i.e., the two modes transfer energy to each other via
different triadic interactions. A similar relation exists between
(0,1) and (1,0).

5 CONCLUSIONS
We have discussed a method to investigate the triadic in-

teractions that underpin the generation of flow structures as-
sociated with a given observable. The method is based on the
resolvent-based extended spectral proper orthogonal decom-
position (RESPOD), used in Karban et al. (2022) to identify
self-similar structures in a turbulent channel flow. A minimal
Couette flow is here chosen as the test case, where the triadic
interactions associated with spanwise wall-shear are investi-
gated.

The analysis reveals that the most energetic mode,
(α,β ) = 0, at its peak-energy frequency, ω = 0, was mainly
driven by six triadic interactions: four interactions involving
modes periodic over Lx in the streamwise direction, that gen-
erate small-in-amplitude but efficient forcing, and two interac-
tions involving streamwise-constant modes that generate forc-
ing structures large in amplitude, and thus effective in driving
the observable. The streamwise-periodic interactions generate
a combined streak-streamwise vortex structure via the lift-up
mechanism, while the streamwise-constant interactions coun-
teract the streak generation by generating a streamwise forc-
ing component in phase opposition to the lift-up mechanism.
This explains in physical terms the destructive interference of
forcing observed by Nogueira et al. (2021) forcing comprises
different triadic interactions, with opposing effects in exciting
streamwise vortices and streaks.

Our framework also allows us to investigate energy trans-
fer between different modes via triadic interactions. We ob-
serve that the triadic interactions involving the (0,1) mode pro-
vides a constructive contribution to all the modes we investi-
gated. This is an expected result since it is the only mode with
negative nonlinear transfer rate of turbulent kinetic energy as

shown by the energy balance analysis we conducted follow-
ing Symon et al. (2021). The relation between (0,1) and the
streamwise-constant modes (0,{−1,2}) is shown to be a one-
way energy transfer which causes the (0,1) mode to lose its
energy. The relation between (0,1) and the streamwise peri-
odic modes (±1,0,1), on the other hand, is found to be in two
ways, with energy transfers in both directions.

The method we discuss provides a systematic means by
which to understand mechanisms active in the generation of
a given observable in a turbulent flow, which can be freely
determined via a measurement matrix, thanks to the flexibility
of the resolvent framework. This makes application of this
approach to more complicated flows possible.
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