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ABSTRACT
We compare how a homogeneous isotropic turbulent flow

(micro-scale Reynolds number Reλ ≈ 435) is modulated by fi-
nite diameter spheres and finite length fibres. Both spheres and
fibres produce a similar bulk effect, characterized by a reduc-
tion of the micro-scale Reynolds number to around Reλ ≈ 220.
However, a spectral analysis of the flows reveals very different
stories for the two particle geometries. For spheres, the flow is
modulated on scales comparable with the sphere diameter. Lit-
tle modulation occurs at smaller scales, and the canonical tur-
bulent energy cascade is recovered in this region of the spectra.
While for fibres, modulation occurs over a much wider range
of length-scales, (including the fibre thickness) and a new tur-
bulent kinetic energy scaling E ∼ κ−1 is found in the place of
the canonical cascade.

INTRODUCTION
Particles of many different shapes are found in turbu-

lent flows, ranging from spherical pollen particles in the at-
mosphere to elongated plastic microfibres in the ocean (Kane
& Clare, 2019) and cellulose fibres involved in papermaking
(Lundell et al., 2011). Understanding how these different par-
ticle shapes affect the flow is of environmental and industrial
importance (De Lillo et al., 2014; Breard et al., 2016; Sen-
gupta et al., 2017; Falkinhoff et al., 2020; Rosti et al., 2020b).
Here we investigate how the shape of the dispersed particles
affects the flow. We explore two extremes of particle shape;
perfectly isotropic spheres and highly anisotropic elongated fi-
bres. Throughout this article, we will use “particle” as a gen-
eral term to refer to both spheres and fibres.

Elghobashi (1994) gives a good overview of the dimen-
sionless parameters that can be used to describe particle laden
turbulent flows, including Stokes number, Galileo number, and
particle volume fraction. In this work we focus on the effect
of particle mass fraction M ≡ mp/(mp +m f ), where mp is the
total mass of the particles, and m f is the total mass of the fluid.

The majority of previous numerical investigations of par-
ticle laden turbulent flows consider only dilute suspensions
(M << 1), where it is assumed the flow is not altered by

Figure 1. 3-D views of the fluid vorticity magnitude in the
tri-periodic cubic domain with spheres (left), and fibres (right).

presence of the particles (Balachandar & Eaton, 2010; Maxey,
2017; Brandt & Coletti, 2021). A few studies consider non-
dilute suspensions of droplets (Dodd & Ferrante, 2016; Fre-
und & Ferrante, 2019; Rosti et al., 2019; Cannon et al.,
2021), isotropic particles (Lucci et al., 2010; Gualtieri et al.,
2013; Capecelatro et al., 2018; Ardekani et al., 2019; Sozza
et al., 2020), and anisotropic particles (Andersson et al., 2012;
Olivieri et al., 2020a,b, 2021). In these studies, authors re-
port changes in the bulk flow properties, as well changes in the
turbulent kinetic energy spectrum. In this work, we build on
these studies by investigating non-dilute suspensions of finite
sized particles1. In particular we directly compare homoge-
neous isotropic flows laden with spheres and fibres in order to
ask the question, “how does the shape of the particles affect
the flow?”

Figure 1 shows two snapshots of setups with spheres and
fibres that we use to answer the above question. We performed
direct numerical simulations of an incompressible Newtonian
fluid in a tri-periodic cubic box of size L, discretised to 1024
numerical grid points in each of the three Cartesian directions.
The fluid is coupled to particle dynamics using the immersed
boundary method. See Podvigina & Pouquet (1994); Pope

1finite sized particles have a size which is comparable to the inertial
range of the flow
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Figure 2. The micro-scale Reynolds number Reλ as a func-
tion of the particle mass fraction M. Flows with spheres are
marked in blue and flows with fibres are marked in green. The
shaded blue and green regions show the standard deviation in
Reλ from the time averaged value.

(2000); Olivieri et al. (2021); Kim & Peskin (2007); Hori et al.
(2022); Huang et al. (2007); Olivieri et al. (2020a,b); Rosti
et al. (2020a); Rosti & Brandt (2020); Rosti et al. (2020b,
2021) for details and validation of the numerical method.

The flow is sustained by deterministic Arnold-Beltrami-
Childress forcing (Podvigina & Pouquet, 1994), giving a
micro-scale Reynolds number Reλ = u′λ/ν ≈ 435 in the sin-
gle phase flow, where ν is the kinematic viscosity, λ is Tay-
lor’s micro-scale, and u′ is the root mean square of the turbu-
lent fluctuations in fluid velocity. For the particles, we use 300
rigid spheres of diameter c = L/(4π), or 104 fibres of iden-
tical length c = L/(4π). These parameter choices give par-
ticles which have a similar total surface area, as well as be-
ing the same proportions. The numerical method is such that
the fibres are slightly flexible, but their stiffness was set to a
large value so their deformation was always negligible. The
diameter of the fibres is d ≈ 2∆x = L/512, determined by the
smoothing of the Dirac delta function used in the immersed
boundary method. We vary the density of the particles to give
a range of mass fractions M. Note that M = 0 refers to the sin-
gle phase case, and M = 1 refers to cases with particles fixed
at random locations in the domain. The plots discussed in the
following section were produced from time averaged simula-
tions once they had been allowed to reach a statistically steady
state.

RESULTS AND DISCUSSION
Figure 2 shows the effect of increasing particle mass frac-

tion M on the micro-scale Reynolds number Reλ of the flow.
We see that Reλ decreases in a similar fashion for increasing
inertia of spheres and fibres alike. In addition, the standard
deviation of Reλ decreases with M, this is typical of a transi-
tion towards laminar flow, where oscillations in time are sup-
pressed. Overall, from figure 2 we see that the isotropic and
anisotropic particles have a similar effect on the bulk flow. To
see the difference between the back-reactions of spheres and
fibres we must observe the flows at all length scales.

Figure 3 shows the turbulent kinetic energy spectrum of
each flow, with the Kolmogorov scaling E ∼ κ−5/3 for com-
parison. As expected, the single phase flow follows the canon-
ical Kolmogorov scaling in the inertial range and is dominated
by dissipation at the small scales (κ > 100). At the largest
scales (κ < 3) we see the spheres and fibres produce a similar
reduction in turbulent kinetic energy E relative to the single
phase, that is, E reduces as the mass fraction M increases.
At the smallest scales (κ > 100), we see that both spheres
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Figure 3. Energy spectra of the turbulent flows laden with (a)
spheres and (b) fibres. The particle mass fraction M for each
case is denoted by the brightness of the line colour, using the
same colours as the markers in figures 2 and 4. The single
phase flow is marked by a black line on both (a) and (b). The
canonical Kolmogorov scaling is marked by a grey dotted line.
The region in which we observe power law scalings (10 < κ <

60) is shaded in dark grey.

and fibres cause a turbulent kinetic energy increase relative
to the single phase, and the effect is most pronounced in the
case of fibres. As we shall see later, this is due to the fluid
solid coupling which injects energy to the flow at small scales.
The most pronounced difference between spheres and fibres
is found at intermediate wave-numbers (10 < κ < 60). With
spheres, the flow recovers to the single phase value of turbu-
lent kinetic energy. Whereas with fibres, the energy is reduced
and the canonical inertial scaling is not observed. Clearly the
isotropic and anisotropic particles are interacting differently
with the flow in this intermediate wave-number range. In all
of the cases, we see clear power-law scalings (straight lines on
the log-log scale), so we made power law fits E = Aκ−β to the
turbulent kinetic energy in the range 10< κ < 60, where A and
β are fitted parameters.

Figure 4 shows the dependence of the fitted exponent β

on the mass fraction M of particles. The single phase flow
(M = 0) and the flows with spheres can be seen to follow the
Kolmogorov scaling (β = 5/3), whereas the flows with fibres
show a significant departure from Kolmogorov’s theory as the
mass fraction increases; and we see instead that β ≈ 1 for
M > 0.6. We explain the mechanism underlying this new scal-
ing by considering the two point velocity correlations δu(r) in
the flows; δu(r) is defined as the difference in fluid velocities
at two points separated by a distance r. By simple dimensional
analysis we expect the energy spectrum to scale linearly with
the variance of the velocity correlation 〈(δu(r))2;

E(κ)∼ 〈(δu(r))2〉κ−1 (1)

The fibres are slender, and they act as a barrier to the flow
between any two points with separation greater than the fibre
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Figure 4. Dependence of the exponent β in the turbulent ki-
netic energy scaling E ∼ κ−β on particle mass fraction M.
Flows with spheres are marked in blue, flows with fibres in
green, and the single phase flow in black. The blue and green
shaded regions show the approximate error in β , estimated by
moving the time averaging window. The Kolmogorov scaling
is marked by a grey dotted line.

diameter d. Hence fibres decorrelate the flow by increasing
the value of δu(r) for all r > d. This means the variance of
the correlation has little dependence on the separation, and so
〈(δu(r))2〉 ∼ r0 is roughly constant. Plugging this expression
into equation 1, we obtain the energy scaling E(κ)∼ κ−1 ob-
served in figure 4. That is, the fibres decorrelate the flow and
reduce the magnitude of the scaling exponent β . Spheres on
the other hand can only act as barriers to the flow for sep-
arations larger than their diameter c, so we see a departure
from Kolmogorov’s scaling only at the largest length-scales
(κ < κc = 12.6) in figure 3a.

To view the length-scales at which the particles act on
the flow, we show the spectrum of work done on the fluid by
the particles Ffs in figure 5. This is the fluid-solid coupling
contribution to the turbulent kinetic energy-spectrum balance,

∂tE(κ, t) = T (κ, t)+V (κ, t)+Ftur(κ, t)+Ffs(κ, t) (2)

Where T,V , and Ftur are the rate of work done on the fluid
by convection, viscous dissipation, and turbulence forcing re-
spectively. We see that the work done by the spheres peaks
around κ = 10 ≈ κc, and makes minimal contribution to the
flow at smaller scales (κ > 60). On the other hand, the work
done by the fibres peaks around κ = 100, and shows a much
broader spread in Fourier space. I.e., the spheres act on the
fluid at length-scales comparable with their diameter, and the
anisotropic particles act at length scales comparable with their
thickness d. This is in keeping with the observations of decor-
relation made above.

CONCLUSIONS
We have investigated finite sized particle-laden turbulent

flows at exceptionally high Reynolds numbers. By contrasting
flows with spheres and fibres, we found that particle geometry
has profound effects on the mechanisms of turbulence modula-
tion. Even for fibres and spheres of the same size, geometrical
effects mean fibres disrupt the entire turbulent energy cascade,
whereas spheres do not. However both particle geometries
have similar drag enhancing effect on the flow (figure 2). We
can assume that particles of intermediate aspect ratios (such as
ellipsoids) would have an effect which is qualitatively in be-
tween the two cases discussed in this paper, I.e., a micro-scale
Reynolds number that decreases with particle mass fraction,
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Figure 5. Spectra of the work done on the fluid by the par-
ticles Ffs, normalised by their peak values Fmax

fs for ease of
comparison. The work done by spheres is plotted in blue (a),
and the work done by fibres is plotted in green (b). The parti-
cle mass fraction M for each case is denoted by the brightness
of the line colour, using the same colours as the markers in fig-
ures 2 and 4. The vertical dotted lines show the wave-number
κc corresponding to the sphere diameter and fibre length.

and a disruption of Kolmogorov’s turbulent cascade at large
to intermediate scales. These results have applications in tur-
bulent flow control, E.g., they show that fibres can be added
to a fluid in order to reduce velocity correlations and enhance
mixing at small scales.
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