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ABSTRACT 

To establish integrating explanation for characteristics of 

compressible wall-bounded turbulence, scaling laws and 

relevant turbulent coherent structures in compressible wall-

bounded turbulence are investigated in light of Townsend’s 

attached-eddy hypothesis. Using data of direct numerical 

simulation of supersonic turbulent channel flow between 

isothermal walls, we verified the scaling laws for mean velocity 

and Reynolds stresses, which can be predicted by attached-eddy 

hypothesis in a unified way. The transformed mean velocity 

profiles and the Reynolds stresses using semi-local scale 

supports the predicted scaling laws at certain extent. However, 

complete logarithmic dependence is not achieved due to 

relatively low-Reynolds number or insufficient scale separation, 

especially for streamwise normal stress. In search of coherent 

structures responsible for the logarithmic dependence of the 

turbulent statistics, wall-attached structures of velocity 

fluctuations are extracted from instantaneous flow fields. 

Reconstructed flow field from wall-attached self-similar 

structures fits more closer to the logarithmic variation. With 

these findings, we have provided the convincing evidence for the 

validity of the scaling laws and the existence of coherent 

structures corresponding the attached-eddy hypothesis for the 

compressible wall-bounded turbulence. 

 

 

INTRODUCTION 

Scaling laws for statistical features of wall-bounded 

turbulence has been an important issue since they are considered 

as building blocks for understanding the characteristics of the 

wall-bounded turbulence. Furthermore, given that the wall-

bounded turbulence consists of coherent structures (i.e., eddies) 

which naturally occur across a wide range of length scales and 

are considered as responsible for the relevant scaling laws, 

efforts has been devoted to investigation of such coherent 

structures because it has been a foundation for modelling and 

control strategies of the wall-bounded turbulence. Along with 

these principal thoughts, the study of the scaling laws and the 

coherent structures has started from the study of incompressible 

wall-bounded turbulence, due to relatively simple condition of 

constant fluid properties, while the study of compressible wall-

bounded turbulence is preceded by, and hence, takes its root in 

the incompressible counterpart. 

From the classical point of view, the presence of a wall 

naturally enforces multiscale characteristics on turbulence above 

the wall, with length scale ranging from viscous length scale δv  

to flow thickness δ. The scale separation between these distinct 

length scales is usually expressed as friction Reynolds number, 

Reτ=δ/δv. Emerging with sufficient scale separation (high Reτ), 

logarithmic variation of mean velocity profiles is recognized as 

a cornerstone for the wall-bounded turbulence. This region, so 

called as logarithmic region, occurs at δv<<y<<δ (y is distance 

from the wall), and it is equivalent to the condition of the 

sufficient scale separation. In essence, characteristic velocity 

scale is friction velocity uτ=(τw/ρ)1/2 (τw is wall-shear stress and 

ρ is density) and any geometric length scale is proportional to 

distance from the wall, y (Marusic et al., 2013).  

In this context, Townsend (1976) conjectured that the length 

scales of energy-containing eddies in the logarithmic region are 

scaled by their position (y), and thus, they extend to the wall, 

which is called Townsend’s attached-eddy hypothesis (AEH). 

Based on the AEH by Townsend (1976), Perry and Chong (1982) 

proposed the statistical description of logarithmic region in wall-

bounded turbulent flows such that hierarchies of geometrically 

self-similar eddies are superpositioned with their population 

inversely proportional to their length scale (y). The proposed 

representation and following deductions, which is called as 

attached-eddy model (AEM), lead to important scaling laws for 
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the wall-bounded turbulence, such as logarithmic variation of 

mean velocity and Reynolds stresses for wall-parallel 

components, as well as their spectral imprint of k-1 scaling (k is 

wavenumber). Further refinement of attached-eddy model has 

been achieved through the following studies (Perry et al., 1986; 

Perry and Marusic, 1995 and so on). Recently, evidence of the 

AEH (or the AEM) has been substantiated by observations for 

co-existence of logarithmic variations of mean velocity and 

normal stresses in high-Reynolds-number flow fields with high-

fidelity (Hultmark et al., 2012; Marusic et al., 2013; Lee and 

Moser 2015), and hence its significance is more increasing. 

In last decades, the efforts have been devoted in order to 

identify the coherent structures corresponding to the AEH. 

Although several studies (del Á lamo et al., 2006; Lozano-Durán 

et al., 2012) provided the existence of self-similar motions in 

physical space, whether they are responsible for the formation of 

logarithmic variation have not been elucidated. Among the 

relevant studies, studies by Hwang and Sung (2018; 2019) found 

that the wall-attached clusters of streamwise velocity 

fluctuations are not only geometrically self-similar but also have 

population density following the hierarchical length scale 

distribution. Furthermore, they successfully showed a 

reconstructed flow field from the identified structures displays 

clear logarithmic variations of the statistics even at relatively 

low- to moderate-Reynolds number, suggesting the identified 

structures as prime candidates for the coherent structures 

corresponding the AEH. 

On the other hand, the established scaling laws for mean 

velocity and Reynolds stresses in the incompressible wall-

bounded turbulence is not directly affordable for the 

compressible wall-bounded turbulence because properties such 

as thermodynamic properties (e.g., temperature, density and 

pressure) are not constant. One might expect that the variations 

in properties would significantly alter various aspect of wall-

bounded turbulence. According to Morkovin’s hypothesis (MH), 

at moderate Mach number, compressibility effect of density 

fluctuation on turbulence is small, and essential dynamics 

closely follow those of incompressible flow (Morkovin, 1962). 

Hereafter, compressible wall-bounded turbulence only indicates 

the moderate Mach number flow (i.e., non-hypersonic flow) if 

without any specification.  

Encouraged by the principle of the MH, the scaling laws for 

the compressibile wall-bounded turbulence have been 

established via compressibility transformation, which casts the 

compressible turbulent statistics to incompressible counterpart. 

Accordingly, the logarithmic variations for mean velocity and 

wall-parallel components of the Reynlolds stresses (AEH) are 

expected through the transformations (Smits and Dussage, 2006). 

Although van-Driest transformation and Morkovin’s scaling, in 

general, are agreed upon based on large volume of experimental 

data (Fernholz and Finley, 1980; Smits and Dussage, 2006), their 

accuracy has been questioned due to uncertainty in measurment. 

This issue was resolved by performing direct numerical 

simulation of the compressible flow, and modified 

transformations are also suggested (Trettel and Larsson, 2016; 

Huang et al., 1995) for strong wall heat transfer conditions. 

However, the DNSs of the compressible flow have been 

performed at relatively low-to-moderate Reynolds number 

limited by computational cost, and complete logarithmic 

variations for the turbulence statistics, especially for the 

streamwise Reynolds stresses, are not observed due to 

insufficent scale separations.  

On the other hand, in similar context with the incompressible 

counterpart, several studies have devoted efforts to elucidate the 

existence of self-similar coherent structures in the sense of the 

AEH. Pirozzoli (2012) and Modesti and Pirozzoli (2016; 2019) 

proposed an appropriate length scales for spanwise width of 

spatial correlation and spanwise wavelength at peak of energy 

spectra of stremwise velocity fluctuation in compressible flow 

of canonical geometries. In their studies, the proposed length 

scales showed good scaling accuracy in overall outer layer with 

reasonable Mach number range, and it is indicates increasing 

trends of the spanwise length scales for the turbulent motions 

with the wall-normal locations. Although these studies 

successfully took account of the compressibility effects on the 

length scales of the turbulent motions, and found the presence of 

self-similar motions in the compressible wall-bounded 

turbulence, it has not revealed for how they contribute to the 

suggested scaling laws. 

The objective of present study is to establish integrating 

explanation for characteristics of compressible wall-bounded 

turbulence. To this end, scaling laws and relevant turbulent 

coherent structures in compressible wall-bounded turbulence are 

investigated in terms of the AEH. We verify the predicted 

scaling behaviors using data of direct numerical simulation of 

supersonic turbulent channel flow between isothermal walls at 

moderate Reynolds number. In search of coherent structures 

responsible for the logarithmic variation of the turbulent 

statistics, wall-attached structures of velocity fluctuations are 

identified by implementing the method of Hwang and Sung 

(2018; 2019) and their characteristics are investigated. 

 

 

NUMERICAL METHODS 

Direct numerical simulation of supersonic turbulent channel 

flow between isothermal wall at Reb=24000 and Mab=1.5 (where 

subscript b denotes bulk variables) is performed by solving 

governing equations of compressible perfect gas with the 

numerical schemes of Bernardini et al. (2020). Based on the wall 

variables (uτ and δv) semi-local variables (uτ
* and δv

*), the flow’s 

friction Reynolds number Reτ
 =h/δv (h is channel half-height) and 

semi-local Reynolds number Reτ
*=h/δv

* are 1390 and 930, 

respectively, and it is denoted as C930. Throughout the present 

study, x, y and z indicate streamwise, wall-normal and spanwise 

directions, respectively, and u, v and w are velocity components 

for each direction. Computational domain is set as Lx × Ly × Lz = 

10πh × 2h × 3πh, which is expected to be sufficiently long to 

accommodate large- and very-large scale motions (Kim and 

Adrian, 1999; Ganapathisubramani et al., 2006). Uniform grid 

spacing is implemented in the streamwise and spanwise 

direction, while grids are clustered toward the walls using 

hyperbolic tangent mapping function. Grid resolutions in each 

direction based on wall variable (∆x+, ∆y+ and ∆z+) are set as 

14.31, 0.16~9.41 and 7.38, respectively. For the comparison, 

DNS data of incompressible turbulent channel flow at Reτ=930 

(Lee et al. 2014) are employed, which are denoted as I930. The 

numerical details for DNS of I930 is referred to Lee et al. (2014). 

For averaging methods, it is noted that <f> and f′ refer to 

Reynolds-averaged and fluctuating quantities, while 

{f}=<ρf>/<ρ> (ρ is density) and f″ denote Favre-averaged and 

fluctuating quantities. And superscript + and * indicate 

quantities scaled by wall and semi-local variables, respectively. 

It is noted that, for incompressible flow, both scalings are 

identical by definition and transformation has no effects on 

quantities due to constant properties. 
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SCALING LAWS OF COMPRESSIBLE WALL-

BOUNDED TURBULENCE 

Scaling laws for mean velocity profile for the compressible 

wall-bounded flow is expressed in form of gradient as below (1)  

 

 
  *d u u

dy y




=  (1) 

 
, where κ is the von-Kármán constant. This scaling law was 

derived from extension of mixing length theory (van-Driest 1951) 

or law of the wall (Bradshaw 1994) with assumption of the 

existence of constant stress region close to the wall and 

consideration of the mean density variation. In their studies, the 

scaling constant κ is assumed to be identical with that of the 

incompressible counterpart. 

In investigating the scaling law for mean velocity (1) based on 

the obtained DNS data, compressibility transformations are 

implemented. As following Modesti and Pirozzoli (2016; 2019), 

the compressibility transformations for the distribution of mean 

velocity are casted to forms of integral. The transformations for 

the wall-normal coordinate and the mean velocity are expressed 

as T T
0

y

y f dy=   and  
 

 TT 0

u

u g d u=  , respectively. Here, 

subscript T denotes transformed quantities and fT and gT are 

transformation kernels. By changing the variable of integration 

with the chain rule, the formula for {u}T is rearranged as 

   TT 0

y

y
u g u dy=   ({u}y denotes d{u}/dy). Then, using their 

gradients (i.e., dyT/dy and d{u}T/dy), d{u}T/dyT can be expressed 

as below (2). 

 

 
 

TT

T T

{ }d u g d u

dy f dy
=  (2) 

 
Whilst, if profile of {u}T shows logarithmic variation in the 

transformed coordinate (yT), the relation for the d{u}T/dyT 

follows as 

 

 
 

T

T c

d u u

dy y




=  (3) 

 
, where κc is scaling constant, but not to be determined yet, since 

it is not known a priori whether scaling constant κc is same with 

the von-Karman constant κ. Here, the velocity scale for {u}T in 

(3) is uτ since compressibility transformations in use will adopt 

constant variable (i.e., wall variables). Now, Equating (2) and (3) 

yields the relation for the actual (or untransformed) mean 

velocity gradient (4). 

 

 
 

1

T

T Tc

d u g u

dy f y





−

 
=  
 

 (4) 

 
It is stressed that relation (4) is valid only when the transformed 

mean velocity follows logarithmic variation (3), while scaling 

property of d{u}/dy expressed by (4) depends on the constitution 

of compressibility transformation in use (i.e., kernel  fT and gT). 

From this procedure, one can obtain straight information about 

the actual mean velocity {u} from scaling properties of the 

transformed velocity. For the present analysis, we investigate 

transformed mean velocity profiles of {u}D(yD) by van-Driest  

 
Figure 1. Mean velocity profiles for C930 (blue symbols) and 
I930 (green symbols): (upper) untransformed velocity, {u}un

+ 

(middle) D-transformation {u}D
+ and (lower) TL-transformation 

{u}TL
+. Former two profiles are displaced by ∆{u}T

+=5. Colored 

straight lines are added as guides for logarithmic variation. 

 
(1951) and {u}TL(yTL) by Trettel and Larsson (2016), as well as 

untransformed (actual) mean velocity {u}un.={u}. The sets of the 

transformation kernels for the van-Driest transformation (5) and 

the Trettel and Larsson transformation (6) are described below. 

 

 ( )
1/2

1D

D w

f

g  

= 
= 

 (5) 

 
( )( )
( )

1/2
1 1 1

TL 2

1/2
1 1 1

TL 2

1

1

w

w

w

d d

dy dy

d d

dy dy

f y y

g y y

   

   

  

  

 = + −  


 = + − 
  

 (6) 

 
In figure 1, profiles of mean velocities for C930 and I930 are 

illustrated. As previously reported, an excellent accuracy for TL-

transformation is observed where {u}TL(yTL) perfectly collapse 

onto the profile of I930, and hence, it shows logarithmic 

variation with the slope of 1/κc=1/0.41. Since {u}TL(yTL) satisfies 

(3), it is possible to use (4) to determine the property of d{u}/dy. 

Direct substitution of fTL, gTL, yTL and κ (also found in scaling 

law of dissipation) into fT, gT, yT and κc in (4) exactly leads to 

d{u}/dy~ uτ
*/κy. Next, the profile of {u}D(yD) does not collapse 

onto the I930, and this failure is not expected to be recovered 

even for a comparison of matching Reτ. As noted by previous 

studies (Modesti and Pirozzoli, 2016; Yao and Hussain, 2020), 

however, profile still follows logarithmic variation with the 

identical slope of 1/κc=1/0.41 with a certain extent. Then, the 

identical approach with {u}TL(yTL) can be applied for {u}D(yD) 

and it deduces d{u}/dy~ uτ
*/κy. Therefore, both transformation 

results resolve to same conclusion leading to the scaling law (1) 

and the successful transformations are consistent with the MH. 

On the other hand, a region for the logarithmic variation with the 

slope of 1/κc =1/0.41 for {u}un is substantially narrowed (around 

at y+=100) so that the presence of the logarithmic region is not 

certain. According to (1) consistent with present findings, it is 

predictable because the scaling for mean velocity will fail when 

using constant value of uτ, instead of uτ
* which varies with y. 

On the other hand, the scaling laws for the Reynolds stresses 

(7-9) are predicted by the AEH and the Morkovin’s scaling 

(Smits and Dussage, 2006), the latter alternating the velocity 

scale for the turbulent motions from uτ to uτ
*. 
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  
*

1 1 log
y

u u B A


 
  = −  

 
 (7) 

  
*

2 2 log
y

w w B A


 
  = −  

 
 (8) 

  
*

3v v B  =  (9) 

 
Here, Ai (i=1, 2, 3) and Bj (j=1, 2) are constant. According to the 

prediction of the AEH, scaling by inner variables fails for wall-

parallel components of Reynolds stresses due to the 

superposition of the energy-containing eddies having finite slip 

velocity near the wall. While the wall-normal component is 

constant due to restriction by the impermeable boundary 

condition (Townsend 1976; Perry and Chong 1982). 

Figure 2 provides profiles of Reynolds stress for C930 and 

I930 in inner and outer coordinates. The profiles in inner 

coordinates adopt scaling by semi-local variables (Huang et al., 

1995) and the profiles collapse well throughout whole layer as 

matching the semi-local Reynolds number (Reτ
*) between C930 

and I930, except increased streamwise intensities near the wall. 

While the profiles in the outer coordinate, consistent with the 

Morkovin’s scaling, well matched in the outer layer even though 

the frictional Reynolds numbers (Reτ) differ. 

For each component, the scaling law of (8) for the spanwise 

components is observed. For the incompressible case, this 

behavior is reported from previous study (Lee and Moser, 2015) 

and it starts to emerge at Reτ≈1000 and, for the compressible case, 

scaling law of (8) is also observed from similar simulation 

results by Modesti and Pirozzoli (2016) and Yao and Hussain 

(2020). Besides, the scaling law of (9) for the wall-normal 

components are confirmed, also. This behavior is easily 

observable in numerous literatures. However, the logarithmic 

variation for the streamwise components (7) are not found for 

both cases. Considering that the logarithmic variation of 

streamwise normal stress is observable at much higher Reynolds 

number in the incompressible flows (Hultmark et al., 2012; 

Marusic et al., 2013), the logarithmic dependence for the 

streamwise normal stress is remain unclear. But hopefully, the 

scaling by semi-local frictional velocity uτ
* is very successful at 

low Reynolds number, we can only expect the logarithmic 

variation of streamwise normal stress is observable at much 

higher Reynolds number. 

Although the above results showed that, at some extent, the 

turbulent statistics follow the scaling laws of (1) and (8-9) for 

the compressible wall-bounded turbulence, using the 

compressibility transformations and the semi-local variables, 

rigorous logarithmic dependence are not achieved based on 

indicator function, especially for the streamwise Reynolds stress, 

due to relatively low-Reynolds number. Furthermore, even if the 

scaling laws (1) and (7-9) are valid, coherent structures 

 

 

 
Figure 2. Reynolds stresses profiles in (a) inner and (b) outer 

coordinates. Lines in each panel are profiles for C930 while 
symbols indicate those for I930. Colored straight lines are added 

as guides for logarithmic variation for the spanwise components 

 
Figure 3. Iso-surfaces of identified wall-attached structures of 

streamwise velocity fluctuations in an instantaneous flow field: 
(a) I930 and (b) C930. Red and Blue colors indicate positive and 

negative fluctuations, respectively, and colors fade out as y/h 

increases. 

 

 

contributing to these scaling laws are not elucidated for the 

compressible wall-bounded turbulence, yet. 

 

 

WALL-ATTACHED STRUCTURES OF VELOCITY 

FLUCTUATIONS 

The other goal of the present study is to identify actual 

coherent structures within random instantaneous flow fields, 

which correspond to the AEH and contribute to the scaling laws. 

To this end, clusters of velocity fluctuations are identified 

through the methodology suggested by Hwang and Sung (2018; 

2019). The clusters of velocity fluctuations are defined as the 

groups of connected points satisfying u″>+α{u″u″}1/2 or u″<-

α{u″u″}1/2, where α=1.6 based on percolation theory. Owing to 

the advantage of DNS, three-dimensional spatial information of 

the identified structures is accessible, and assigned to each of 

structures. Based on their minimum distance from the wall, the 

identified structures are classified into wall-attached and 

detached structures. Examples of the wall-attached structures for 

C930 and I930 are provided in figure 3, and qualitative similarity 

is found supporting the validity of the MH. 

The dimensions of individual structures are determined by 

dimensions of their bounding boxes, and length, height and 

width of structures are denoted as lx, ly and lz, respectively. 

Figure 4 illustrates the self-similarity nature of the identified 

structures as mean length <lx> and width <lz> follow <lx>~ly0.74 

and <lz>~ly, respectively. In addition, the number density of the 

structures per unit area (ns) also showed their population 

following the hierarchical length scale distribution (inversely 

proportional to ly), which is not shown here. These results 

indicates that the characteristics of the identified structures is 

consistent with the AEH. 

According to the AEH, the superposition of geometrically 

self-similar hierarchies leads to the logarithmic variation of the 

turbulent statistics. To determine whether the identified 

structures exhibit the logarithmic variation of the turbulent 

statistics in the sense of the AEH, statistical flow field is 

reconstructed from motions carried by the extracted wall-

attached structures showing both the self-similarity and the 

hierarchical length scale distribution, and detailed definition for 

reconstructed flow field can be found in Hwang and Sung (2018; 

2019). Figure 5(a) shows the logarithmic dependence of the 

reconstructed {u″u″}as from the identified structures, normalized 
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Figure 4. Variations of ensemble-averaged length <lx> (upper) 

and width <lz> (lower) of the wall-attached structures with 

respect to its height. Lines are for C930 while symbols represent 

the I930. Colored right-angled triangles are added as guides. 

 

 

by uτ
*. Here, it is noted that due to the definition of the identified 

structures (intense u″ by α=1.6) and {u″u″}as, the magnitude of 

{u″u″}as are much greater than that of {u″u″}. Since the 

objective of the present study is to identify coherent structures 

contributing to the scaling laws in terms of the AEH, comparison 

here is done by reducing magnitudes as factor of 4, as focusing 

the logarithmic variation, rather than the actual magnitude. In 

this way, lower panel of figure 5(a) again confirms the 

logarithmic dependence of {u″u″}as. which is absent in the actual 

streamwise stress {u″u″}. The logarithmic dependence can be 

analysed using indicator function Ξ=yd{u″u″} *
as/dy, where a 

plateau region indicates complete logarithmic dependence. In 

accordance with the figure 5(a), indicator function for {u″u″}as 

in figure 5(b) has been much flattened than that of {u″u″}, and 

it deviates from constant value much more gradually. 

Additionally, similar analysis for the mean velocity for the 

motions carried by the identified structures ({u}as) also revealed 

more clear logarithmic dependence for the reconstructed flow 

field (not shown here). As a result, we have confirmed the 

presence of the coherent structures contributing to the scaling 

laws for the compressible flow. And it is conjectured that the 

observed logarithmic dependences in the reconstructed flow-

fields at the moderate-Reynolds number seem to be masked in 

the actual mean velocity {u} and/or stress distribution {u″u″} by 

insufficient scale separation or contamination of other scales. 

 

 
CONCLUSION 

The turbulent statistics obtained from direct numerical 

simulation of supersonic turbulent channel flow between 

isothermal walls showed the existence of y-scaling region with 

the velocity scale to be uτ
*. In this region, the transformed mean 

velocity profiles showed logarithmic variation, while the 

spanwise and wall-normal components of the Reynolds stresses 

followed the prediction by the AEH. However, due to relatively 

low-Reynolds number or insufficient scale separation, the 

complete logarithmic dependence is not achieved. Especially, 

the streamwise normal stress is far from the prediction of the 

AEH. In search of the coherent structures responsible for the 

logarithmic dependence of the turbulent statistics, reconstructed 

flow field from the wall-attached self-similar structures showed 

clear logarithmic variation for the streamwise normal stresses, as 

manifesting their primary role for the formation of the scaling  

 
Figure 5. (a) (upper) Streamwise Reynolds stress reconstructed 

from the identified wall-attached structures {u″u″}as based on 
Morkovin’s scaling and (lower) comparison between 

distribution of the reconstructed stress {u″u″}as and the actual 

stress {u″u″}. Blue straight lines are added as guides for the 

logarithmic variations. (b) Indicator functions Ξ=yd{u″u″}*
as/dy 

for estimating logarithmic variation. In each panel, comparison 

is done as {u″u″}*
as being reduced by factor of 4. 

 

 

laws. Through the present study, the integrating explanation for 

the characteristics of the compressible wall-bounded turbulence 

is established as providing the supporting evidence of the AEH 

for the compressible wall-bounded turbulence. 
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