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ABSTRACT
The two-dimensional to three-dimensional transition of a

flow past a plunging NACA 0012 airfoil at a Reynolds num-
ber of Re = 400, based on the chord length c, and an angle
of attack of 15 degrees was investigated using global linear
stability analysis and spanwise-homogeneous direct numerical
simulation (DNS). The peak-to-peak plunging amplitude was
fixed at A/c = 0.5 and the Strouhal number was varied from
Stc = 0.10 to Stc = 1.00. This parameter regime encompasses
flow phenomena of leading-edge vortex (LEV) dominated flow
(0.10 ≤ Stc ≤ 0.19), almost vanishing LEV-trailing-edge vor-
tex (TEV) interaction (0.22 ≤ Stc < 0.5), strong previous cy-
cle LEV-TEV interaction (0.49 ≤ Stc ≤ 0.95) and aperiodic
flow (Stc ≥ 0.99). For the periodic baseflow, Floquet stabil-
ity analysis was conducted. Below a Strouhal number of 0.5,
the Floquet multiplier is smaller than the static airfoil which
indicates the plunging motion stabilises the two-dimensional
baseflow. For higher frequencies, a period-doubling mode ap-
pears, which has a peak Floquet multiplier around a spanwise
wavelength of 2c. This unstable mode also dominates in three-
dimensional direct numerical simulations (DNS). Finally, a
short-wave mode becomes unstable at Stc = 0.95, which gen-
erates more small-scale vorticies in the DNS result.

Introduction
For insects flying at low Reynolds numbers, the flapping

wing is a common form of motion. By flapping its wings, the
insect can achieve a much higher lift than the classical static
wing (Ellington et al., 1996) and a greater maneuverability
(Alexander, 1986). This motivates the study of this mecha-
nism and to develop smaller bio-inspired aerial vehicles.

As the simplest form of flapping, the pure plunging mo-
tion has been studied extensively. Thrust generation of a
plunging airfoil at zero angle of attack (AoA) was studied by
Triantafyllou et al. (1991); Wang (2000); Godoy-Diana et al.
(2008) and Andersen et al. (2017). It was found that this gain
in thrust is caused by the suction force of the leading-edge vor-

tex (Wang, 2000) and that the critical frequency of the drag-to-
thrust transition follows that of the von Kármán, to reverse von
Karman, vortex street transition (Godoy-Diana et al., 2008).
The lift enhancement of a post-stall airfoil by the plunging mo-
tion was studied by Cleaver et al. (2011) both experimentally
and numerically, however, the explanation of this lift enhance-
ment through vortex dynamics has not been fully explored and
so this is one of the focus of this paper.

An obvious starting point for numerical simulations is a
purely two-dimensional (2-D) flow. Visbal (2009) undertook
large-eddy simulations of a plunging low-aspect-ratio SD7003
airfoil at Reynolds numbers in the range 10 000 to 40 000 and
showed that the three-dimensional (3-D) force is almost the
same as the 2-D force at a reduced frequency of Stc = 1.25
and a normalised amplitude of A/c = 0.1, where c is the
chord length. Zurman-Nasution et al. (2020) conducted di-
rect numerical simulations of a flapping NACA 0016 airfoil at
a Reynolds number of 5300 and found the 2-D force only to
be valid for a range of Strouhal numbers around Stc = 0.3 for
pure plunging motions.

The transition boundary and mechanism of 2-D to 3-D
flow are clearly crucial for assessing the validity of 2-D sim-
ulations. Moriche et al. (2016) studied the global instability
of a combined plunging and pitching NACA 0012 airfoil at
a Reynolds number of 1000 and an amplitude of 2c. They
found a long-wave subharmonic unstable mode, which has a
peak Floquet multiplier at a wavelength of 4.078c and resem-
bles mode A of the cylinder flow. Sun et al. (2018) studied
the instability of a plunging NACA 0015 airfoil at zero angle
of attack, a Reynolds number of 1700, amplitudes from 0 to
0.3c and reduced frequencies from 4 to 8.4. They found three
unstable modes: mode A, a quasi-periodic mode, and mode B,
but the quasi-periodic mode is not dominant in the transition
region.

This study aims to explore the 2-D to 3-D transition mech-
anism of a very low Reynolds number (Re = 400) flow past a
post-stall NACA 0012 airfoil. The plunging amplitude is fixed
at 0.5c which is between the amplitude used by Moriche et al.
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(2016) and Sun et al. (2018). The plunging frequency is in-
creased gradually from below the natural shedding frequency
to chaotic flow, to cover the complete range of flow regimes.
Direct numerical simulations are also conducted. The link be-
tween linear stability analysis and direct numerical simulations
is further discussed.

Numerical methods
The airfoil is treated as a rigid body with a fixed angle of

attack (AoA) of 15 degrees. To avoid the need for a moving
grid, the absolute velocity u is solved in the body frame of
reference. The governing equations in dimensionless form are

∇ ·u = 0, (1)

∂tu+(u−UB) ·∇u =−∇p+Re−1
∇

2u. (2)

In this study, Re = 400 is based on the uniform incoming flow
U∞ = 1 and the chord length c = 1. The airfoil moves trans-
versely under the motion

UB =−πA f sin(2π f t)ey, (3)

where f is the plunging frequency and A = 0.5c is the peak-
to-peak amplitude.

Two dimensionless frequencies can be defined. These are
the reduced frequency, which is usually used to measure the
flow unsteadiness, given by

k = π f c/U∞, (4)

and the Strouhal number,

Stc = k/π = f c/U∞. (5)

A second-order velocity correction scheme (Karniadakis
et al., 1991) is used to transform equations (1) and (2) into
a set of Helmholtz equations (one for each space dimension)
and one pressure Poisson equation. The spectral/hp element
method, which is implemented in the open-source code, Nek-
tar++ (Cantwell et al., 2015), is used to solve equations (1) and
(2).

The computational domain spans −40 ≤ x ≤ 60,−40 ≤
y ≤ 40 and contains 9985 quadrilateral and 64 triangular el-
ements, with 5 polynomial modes in each dimension. The
height of the first layer elements on the body surface is en-
forced to be 0.005c. For the spanwise-homogeneous 3-D sim-
ulation, a Fourier expansion with de-aliasing is applied. The
spanwise length is 10c and 64 Fourier planes are used (32
complex modes). A spectral vanishing viscosity (SVV) with
a DG-mimic kernel (Moura et al., 2020) is also applied in the
polynomial expansion to improve numerical stability. Based
on the parameters in Son et al. (2022), the above resolution is
sufficient.

The linearised equation (2) with infinitesimal 3-D distur-
bance is also solved in order to explore the linear stability of
the periodic baseflow. According to Floquet theory, an eigen-
mode can be assumed to have the following form

u(x,y,z, t0 +nT ) = µ
nû(x,y, t0)cos(β z), (6)

v(x,y,z, t0 +nT ) = µ
nv̂(x,y, t0)cos(β z), (7)

w(x,y,z, t0 +nT ) = µ
nŵ(x,y, t0)sin(β z). (8)

Here, µ is the Floquet multiplier and |µ| > 1 indicates an un-
stable mode. β = 2π/λ is the wavenumber and λ is the wave-
length. A modified Arnoldi algorithm with an iteration toler-
ance of 10−5 is used to find the most unstable eigenvalue and
eigenmode (Barkley et al., 2008). The periodic baseflow is
captured by 128 snapshots over one time period and interpo-
lated using 4th-order Lagrange interpolation.

Results
The time-averaged lift and drag coefficients at Re = 400,

A/c = 0.5, are shown in Figure 1. For comparison, experimen-
tal force coefficients of Cleaver et al. (2011) at Re = 10000,
A/c = 0.4, and implicit large-eddy simulation results of Son
et al. (2022) at Re = 10000, A/c = 0.5, are also presented.

For Stc < 0.5, both the lift and the drag forces increase
with plunging frequency. Around Stc = 0.32 (k = 1), the low-
Reynolds number lift agrees with high-Reynolds number re-
sults and the lift is insensitive to the plunging amplitude. The
low-Reynolds number drag is larger than the high-Reynolds
number results due to stronger friction.

A jump in the forces exists around Stc = 0.5 with a hys-
teresis from Stc = 0.49 to 0.5. The lift on the left side is 1.2
times higher than the lift on the right side of the jump. On the
left branch, the 3-D flow is the same as the 2-D flow and there-
fore no 3-D data is given there. On the right branch, the 3-D
flow deviates from the 2-D flow. This indicates the 2-D flow
becomes unstable in the low-lift right hand branch.

For Stc > 0.5, the lift from the numerical simulations is
smaller than the experimental result of Cleaver et al. (2011).
However, the 3-D lift is higher than the 2-D lift. The drag
decreases with plunging frequency and transitions to thrust
around Stc = 0.76 (k = 2.4). The 3-D low-Reynolds number
drag agrees with the high-Reynolds number result.

2-D baseflow
The wake pattern of the 2-D baseflow is shown in Fig-

ure 2. Based on the streamwise advection length of the LEV
and the vortex interactions, the Strouhal number range can be
classified into four regions.

Region 1 corresponds to 0.10 ≤ Stc ≤ 0.19 (0.3 ≤ k ≤
0.6). In this Stc range, the streamwise advection length of the
LEV during a half period is longer than the chord length c. One
strong trailing-edge vortex (TEV) sheds when the LEV passes
the trailing edge and several small TEVs also shed between
two successive LEVs.

Region 2 corresponds to 0.22 ≤ Stc < 0.5 (0.7 ≤ k <
1.57). In this range, the streamwise advection length of the
LEV during a half period is shorter than c but the advec-
tion length during one period is longer than c. The inter-
action between the LEV and the TEV is very weak. For
0.22≤ Stc ≤ 0.38 (0.7≤ k ≤ 1.2), the TEV is positioned nearly
equidistant between the current LEV and the previous LEV
(pLEV). Interaction between the LEV and the pLEV is also
weak. Two single vortices are shed in each period and no vor-
tex pair is formed. Vortices in the wake align along a straight
line. In this Stc range, the flow is insensitive to the Reynolds
number and the plunging amplitude, and the 2-D flow is sta-
ble, as can be seen by a comparison between the present vor-
ticity fields at Re = 400 and the PIV results of Son et al.
(2022) at Re = 10000 in Figure 3. The stable 2-D flow around
k = 1 is also confirmed by Zurman-Nasution et al. (2020). For
0.41 ≤ Stc < 0.5 (1.3 ≤ k < 1.57), the pLEV interacts with the
TEV and forms a vortex pair in the wake. In this vortex pair,
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Stc k λ/c µ

0.50 1.57 2±0.06 -1.0569

0.64 2.00 2±0.07 -1.6519

0.80 2.50 1.8±0.3 -1.7205

0.95 3.00 1.8±0.3 -2.0912

Table 1. The most unstable wavelength and the correspond-
ing Floquet multiplier at Re = 400,A/c = 0.5.

the pLEV is stronger than the TEV. Therefore, their induced
motion leads to this vortex pair moving upwards.

Region 3 corresponds to 0.49 ≤ Stc ≤ 0.95 (1.53 ≤ k ≤
3.00). In this range, the 2-D flow is still periodic but the ad-
vection length of the LEV during one period is shorter than the
chord length c. The TEV has enough time to grow as the pLEV
starts interacting with it. Therefore, the TEV is stronger in the
vortex pair, forming a downward motion pLEV-TEV vortex
pair in the wake. The induced velocity of this vortex pair also
reduces the strength of the current LEV. As a result, the lift,
which is correlated with the LEV, is also reduced.

Region 4 corresponds to Stc ≥ 0.99 (k ≥ 3.1). In this
range, the 2-D baseflow becomes aperiodic.

Linear stability result
The linear stability results are shown in Figure 4. To test

the convergence of the numerical result, a refined mesh with 7
polynomial modes and a baseflow with 256 snapshots are also
used and are shown as red circles. The relative difference is
within 1%.

For Stc < 0.5 (k < 1.57), no absolute unstable mode is ob-
served. For Stc ≥ 0.49 (k ≥ 1.53), a periodic-doubling mode
(µ is a negative real number) first becomes unstable. The
most unstable wavelength and the corresponding Floquet mul-
tiplier are shown in table 1. For all four frequencies explored,
the most amplified mode has a wavelength of about twice
the chord length. At Stc = 0.5 (k = 1.57) and 0.64 (k = 2),
this long-wave mode has a narrow bandwidth. At Stc = 0.80
(k = 2.5), two short-wave stable modes with wavelength of
about 0.7c and 0.3c appear. At Stc = 0.95 (k = 3), modes in a
wide wavelength range λ ≥ 0.25c are unstable.

3-D result
Since the characteristic wavelength of the most amplified

mode is around 2c, the spanwise length of the 3-D simulation
is set as 10c, which is 5 times the wavelength. The flow is first
simulated for 20 time periods using 32 planes in the spanwise
direction. Then 64 planes are used to continue the simulation
for another 20 time periods.

Evolution of the spanwise vorticity at Stc = 0.64(k = 2),
Re = 400, A/c = 0.5, is shown in Figure 5. Both the 2-D flow
and the spanwise-averaged flow are shown. At t/T = 0.75
when the LEV has just formed, the LEV is very strong and
there is no significant displacement along the vortex column.
At t/T = 1, the LEV in the 2-D flow has an almost circular
shape, but the LEV in the 3-D flow are stretched in a 45-degree
direction. The 3-D effect makes the spanwise averaged LEV
appear to diffuse faster (through 3D deformations) and reduces
the adverse effect of the pLEV on the lift. Therefore the 3-D
lift is higher than the 2-D lift.

A spanwise probe line was placed at x = 0.16,y = 0.16 as
shown by the white dot in figure 5. The period-doubling phe-
nomenon is clearly shown by the time evolution of the span-
wise velocity w on this probe line in Figure 6. The alterna-
tive change of the sign of w along the spanwise direction indi-
cates the bending wave on the LEV. At Stc = 0.64 (k = 2) and
Stc = 0.80 (k = 2), the flow evolution pattern is regular and pe-
riodic. At Stc = 0.95 (k = 3), the long-wave period-doubling
pattern is still the most significant spanwise pattern but there
are also many aperiodic small scales.

To measure the energy distribution along the spanwise
wavenumber, the time-averaged power spectral density of w
on the probe line is shown in Figure 7. At Stc = 0.64 (k = 2)
and Stc = 0.80 (k = 2), the spanwise disturbance mainly dis-
tributed on the most energetic wavelength λ = 2c (β = π) and
its higher harmonics. This wavelength 2c agrees with the lin-
ear stability result. At Stc = 0.95 (k = 3), the most energetic
wavelength is λ = 1.7c but the power spectral density shows
a continuous distribution across all wavenumbers. This is in
agreement with linear stability results that the mode is unsta-
ble for a wide range of wavelengths at Stc = 0.95 (k = 3).

Conclusions
The two-dimensional (2-D) to three-dimensional (3-D)

transition of a plunging airfoil at a post-stall angle of attack
of 15 degrees, a Reynolds number of 400 and a plunging am-
plitude of 0.5c was explored using linear stability analysis and
spanwise-homogeneous direct numerical simulations.

For Stc < 0.5, the lift grows with plunging frequency and
the 2-D flow is stable. The lift drops to less than half of
the highest value at around Stc = 0.5, with a hysteresis from
Stc = 0.49 to Stc = 0.5. For St ≥ 0.49, the 2-D flow is unstable.
A period-doubling mode with a wavelength of approximately
twice the chord length first becomes unstable. This mode is
also the dominating spanwise flow structure in the fully devel-
oped 3-D flows.
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Figure 1. Time-averaged lift and drag coefficient scaled by 0.5ρU2
∞c of the plunging airfoil. In present simulations, Re = 400. In Son

et al. (2022); Cleaver et al. (2011), Re = 10000.

Figure 2. Wake patterns of the 2-D plunging airfoil at Re = 400, t/T = 0.5.

Figure 3. Upper panels: instantaneous vorticity field of the 2-D plunging airfoil at k = 1, Re = 400. Lower panels: phase-averaged
vorticity field of the plunging airfoil at k = 1, Re = 10000 from Son et al. (2022)

Figure 4. Floquet multiplier of the 2-D plunging airfoil at Re= 400. Red circles are the refined results to show numerical convergence.
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Figure 5. Upper panels: instantaneous vorticity fields of the 2-D plunging airfoil at k = 2, Re= 400. Lower panels: spanwise-averaged
vorticity field of the 3-D plunging airfoil at k = 2, Re = 400.

Figure 6. Evolution of the spanwise velocity on the probe line (x = 0.16, y = 0.16) for (a) k = 2, (b) k = 2.5, (c) k = 3.

Figure 7. Power spectrum of the spanwise velocity on the probe line (x = 0.16, y = 0.16). From low to high, k = 2, k = 2.5 and k = 3.

6


