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ABSTRACT
Scalar mixing occurs in a wide variety of environmental

and engineering flows. Given that the majority of these flows
are turbulent, a more complete understanding of the mecha-
nisms that underlie the scalar mixing process is required to
predict and control these flows and the evolution of the con-
centration(s) of the scalar(s) therein. Direct numerical simula-
tions (DNSs) are particularly useful in the study of turbulence
since DNSs resolve the full range of (length and time) scales
in turbulent flows. The present work employs a spectral ap-
proach for simulating the hydrodynamic field, and a flux in-
tegral method for computing the advection and diffusion of
the passive scalar. Mixing of the latter is studied in a fully
developed turbulent channel flow, and particular attention is
paid to the evolution of the scalar dissipation rate and the dif-
ferences that arise from different scalar-field initial conditions.
Observed differences in the evolutions for the three initial con-
ditions investigated are explained by an analysis of the differ-
ent terms that comprise the scalar disspation rate budget. To
promote mixing in a wall-bounded flow, it is recommended
that scalar interfaces be aligned normal to the mean velocity
vector, to enhance the stretching of the interface.

INTRODUCTION
Scalar quantities (e.g. temperature, humidity, chemical

species concentration) are mixed within a wide range of envi-
ronmental and engineering flows (e.g. the atmosphere, which
transports temperature and humidity; the oceanic mixed layer,
in which temperature and salinity are mixed; chemical reac-
tors; heat exchangers, combustion processes, etc.). Given that
the vast majority of these flows are turbulent, an understand-
ing of the turbulent scalar mixing process is required to pre-
dict (and, ultimately, control) these flows and the evolution of
the concentration(s) of the scalar(s) therein. Thus, the present
work investigates the turbulent mixing of (passive) scalars,
which are governed by the advection-diffusion equation:

∂ θ̃

∂ t
+ ũ j

∂ θ̃

∂x j
= α

∂ 2θ̃

∂x j∂x j
(1)

where θ̃ represents the instantaneous scalar field, ũ j, j = 1,2,3
are the components of the instantaneous velocity vector field,
α is the scalar’s molecular diffusivity within the fluid, and re-
peated indices imply Einstein’s summation convention.

The present work focusses on the mixing of scalars within
a fully-developed, high-aspect-ratio turbulent channel flow, to
model the behavior of real flows and the physical processes
therein (as opposed to studying mixing within homogeneous
flows). Channel flow is especially appropriate because it is the
simplest realization of an inhomogeneous turbulent flow.

Mixing metrics are often used to quantify the efficacy of
a scalar mixing process. These include i) the unmixedness pa-
rameter (Danckwerts, 1952; Dimotakis & Miller, 1990):

Ξ ≡ ⟨θ 2⟩
Θ(1−Θ)

; 0 ≤ Ξ ≤ 1 (2)

where Θ is the average scalar concentration, θ is its fluctua-
tion, and angular brackets denote averages, or ii) a multi-scale
norm, such as the mix-norm (Mathew et al., 2005):

µθ =

[
∑

k∈Z3

1√
1+4π2||k2||

|Θ̂k(t)|2
]1/2

(3)

where k is the wavevector, and Θ̂k are the Fourier coefficients
of a spectral representation of the scalar field. Note that the two
metrics are very different: the unmixedness quantifies molec-
ular mixing only, whereas the mix-norm quantifies mixing by
accounting for both stirring and molecular mixing. These dif-
ferences have a notable impact on the results using these met-
rics. For example, consider the idealized case of mixing in
two dimensions of two hypothetical fluids (one white and one
black, and both having molecular diffusivities equal to zero).
Let one then assume that the fluid could be stirred in such a
way that the end result would be a configuration similar to
a chessboard, with white and black squares at the smallest
scales. In this case, the unmixedness would be maximum (be-
cause there is no molecular mixing) whereas the mix-norm will
be minimum, because the stirring is complete.

Motivation for the present study stems from observations
by Gubanov & Cortelezzi (2009) and Germaine et al. (2018),
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(a) ICx (b) ICy (c) ICz

Figure 1: The three scalar-field initial conditions studied herein. Imagery generated using VAPOR (Li et al., 2019).

who have observed that scalar fields, including the evolution of
the scalar dissipation rate, are strongly affected by the initial
conditions of the scalar field, even when these initial condi-
tions are mixed by identical hydrodynamic fields. It is there-
fore of interest to investigate the nature of the physical pro-
cesses that lead to such different evolutions of the scalar field.

The objective of the present work is therefore to investi-
gate the effect of scalar-field initial conditions on mixing that
occurs within fully developed, turbulent channel flow. This
will be undertaken by way of an initial comparison between
the evolutions of the two aforementioned mixing metrics and
the scalar dissipation rate in turbulent flows. However, the
primary focus of the present work will be an investigation of
the evolution of the scalar fields for the different initial condi-
tions, by way of an analysis of the various terms in the evo-
lution equation (i.e. budget) of the scalar dissipation rate:
(εθ ≡ α

∂θ

∂x j

∂θ

∂x j
):
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where U j is the mean velocity vector, and u j is the velocity
fluctuation.

SIMULATIONS
The investigations herein employ numerical simulations

of both the turbulent velocity and passive scalar fields, in
which the latter is advected by the former. The turbu-
lent velocity field is calculated via direct numerical simula-
tion (DNS), which resolves all scales of the flow by solving
the Navier-Stokes equations with constant properties. The
DNS of the velocity field is computed using a code enti-
tled CHANNELFLOW (Gibson et al., 2008; Gibson, 2010;
http://channelflow.org/) which uses spectral discretization in
space (Fourier × Chebyshev × Fourier), and a third-order semi-
implicit backwards differentiation scheme in time, with no-
penetration / no-slip boundary conditions imposed at the walls
of the channel (y = 0 and y = 2h, where h is the half-height of
the channel), and periodic boundary conditions in the stream-
wise (x) and spanwise (z) directions. Simulation of the hy-
drodynamic field is conducted at Reτ = 190 over a domain
of size 2πh× 2h×πh, in the streamwise (x), wall-normal (y)
and spanwise (z) directions, respectively, with a resolution of

256×193×192. (Reτ ≡ uτ h/ν , uτ ≡
√

ν ×∂U/∂y|y=0, and
ν is the kinematic viscosity of the fluid.) The resulting turbu-
lent velocity field is statistically steady and statistically one-
dimensional, such that ⟨U⟩= ⟨U⟩(y) only.

The pre-computed velocity field is used as an input to the
advection-diffusion solver, and is interpolated from a spectral
to a finite-volume representation via spectral (exact) interpola-
tion. A very small correction is applied to the streamwise com-
ponent of the velocity field to ensure the exact divergence-free
condition. The advection-diffusion equation is solved using a
fully three-dimensional and cost-effective flux integral method
entitled 3DFLUX (Germaine et al., 2013). The fully explicit
and multidimensional nature of the approach ensures that it
is free of splitting errors, and provides a better convergence
rate of the numerical errors when compared to commonly used
one-dimensional methods. A semi-Lagrangian approach is im-
plemented in 3DFLUX by discretizing the spatial domain on
an Eulerian grid and using a Lagrangian frame of reference for
temporal discretization. Solutions for the advection-diffusion
equation are obtained using non-overlapping control volumes
to discretize the computational domain and estimate the flux
exchanged between adjacent cells. DNS of the scalar field is
undertaken on the same domain of 2πh×2h×πh, with a res-
olution of 514×195×194 to resolve both the large and small
scales of the scalar field. It is assumed that the magnitudes
of the scalar fluctuations are sufficiently small, such that the
dynamics of the velocity field are independent from the scalar
field and the scalar is considered as being passive.

As noted above, the evolution of the mixing with time
will be studied for three different scalar-field initial conditions,
ICx, ICy and ICz, as depicted in figure 1. These fields con-
sist of two equal volumes of uniform concentrations, θ̃ = +1
(black) and −1 (white), separated by two interfaces (due to
the periodic boundary conditions in x and z) of total area
4πh2 (= 2×2h×πh) for ICx and 8πh2 (= 2×2h×2πh) for
ICz and a single interface of area 2π2h2 (= 2πh×πh) for ICy.
All fields have zero mean concentration. Note that all three
scalar fields are subjected to identical turbulent velocity fields,
and thus any differences in the evolutions of the three scalar
fields are the sole result of the orientations of the interfaces
defining the initial scalar fields relative to that of the velocity
field.

RESULTS
Inspired by the results of Germaine et al. (2018), who

investigated the dependence of local anisotropy of passive
scalars on their initial conditions, we plot in figure 2 the scalar
field distributions that result from the action of the identical
turbulent channel flow (velocity field) on scalar fields sub-
jected to the three aforementioned, distinct initial conditions
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(a) ICx (b) ICy (c) ICz

Figure 2: Concentration distributions generated at τ = 7 by the action of the same turbulent channel flow on the three
scalar-field initial conditions. Imagery generated using VAPOR (Li et al., 2019).

Figure 3: Time-evolution of the unmixedness parameter
(solid line) and the mix-norm (dashed line) for the scalar
fields resulting from the three initial conditions.

for a period of τ(≡ tuτ/h) = 7. From this figure, it is read-
ily observed that the scalar field resulting from the ICx ini-
tial condition is the best mixed, whereas that resulting from
the ICy initial condition is the least well mixed. This is al-
ready an intriguing result and indicates that the initial condi-
tions can strongly influence the subsequent mixing. Moreover,
it is worth reiterating that all three scalar-field initial condi-
tions were comprised of equal parts “black fluid” (i.e. scalar
with an initial concentration θ̃ = +1) and “white fluid” (i.e.
scalar with an initial concentration θ̃ = −1). Thus the rate at
which mixing will occur in such an inhomogeneous flow (as is
the flow in all real devices) is highly dependent on the initial
configuration of the two quantities being mixed.

To quantify the mixing, we plot the time-evolutions of
the unmixedness parameter (Ξ) and the mix-norm (µθ ) for the
three scalar-field initial conditions in figure 3. One observes
that the unmixedness starts very close to its maximum value of
1, whereas the initial values for the mix-norm fall between 0.3
and 0.4 (because the latter depend on the initial geometry of
the scalar field). However, shortly after the velocity field starts
mixing the scalar field, the time-evolutions for both mixing
metrics follow a similar pattern; i.e. the evolutions of both Ξ

and µθ decay exponentially with time, with the most efficient
stirring and mixing (i.e. fastest rates of decay of Ξ and µθ )
occurring for the ICx case and the slowest for the ICy case.

Given the objective of attempting to tie the evolutions of
the mixing metrics to the underlying physics of the turbulence,
we first plot the evolutions of the (volume-averaged) scalar dis-

Figure 4: Time-evolution of the volume-averaged (i.e.
⟨·⟩= ⟨·⟩x,y,z) scalar dissipation rates for the scalar fields
resulting from the three initial conditions.

sipation rates (⟨εθ ⟩) corresponding to the fields with the three
initial conditions as a function of time in figure 4. Although
some differences exist at early times (τ < 1), the long term
evolution of ⟨εθ ⟩ is qualitatively similar to the evolutions of
both Ξ and µθ – the dissipation rates decrease at rates depen-
dent upon the initial conditions of the scalar field, with the
the fastest decrease in ⟨εθ ⟩ occurring for ICx, corresponding
to the most efficient mixing, and the slowest corresponding
to ICy. At shorter times, ⟨εθ ⟩ increases, presumably due to the
stretching and stirring of the interface between the two (i.e. the
“black” and “white”) scalar fields, which results in a produc-
tion of ⟨εθ ⟩. This is in contrast with the short-time evolutions
of both Ξ and µθ , which are both monotonically decreasing
functions of time for all values of τ . Note that the values of
⟨εθ ⟩ for the ICx and ICz cases peak around τ ≈ 1/3, whereas
the peak in ⟨εθ ⟩ for the ICy case occurs later, around τ ≈ 2/3.

Before proceeding, we are obliged to discuss the issue of
averaging when presenting the results for the individual terms
in eq. (4). In particular, the homogeneity (or lack thereof) of
both the velocity and scalar fields in this work must be con-
sidered in the analysis of the results. Whereas the velocity
field is statistically homogeneous in the x- and z-directions, as
well as being statistically stationary, the natures of the scalar
fields resulting from the action of the velocity field on the three
different initial conditions are all different. The scalar field re-
sulting from the ICx initial condition is statistically homoge-
neous in the z-direction (only). That resulting from the ICy
initial condition is statistically homogeneous in the x- and z-
directions. Lastly, the scalar field resulting from the ICz ini-
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Figure 5: Evolution in time of the space- and time-averages of all 9 terms in the scalar dissipation rate budget in which
statistical moments (⟨·⟩) are assessed in planes parallel to the initial location of the interface in the initial condition. (a)
ICx with 1

Lx
1
τ

∫ Lx
0

∫
τ

0 Term dτ ′ dx, (b) ICy with 1
2h

1
τ

∫ 2h
0

∫
τ

0 Term dτ ′ dy, and (c) ICz with 1
Lz

1
τ

∫ Lz
0

∫
τ

0 Term dτ ′ dz.

Table 1: Legend for the various terms in the budget of the scalar dissipation rate.

Color Term # Term Physical interpretation

(i) ∂

∂ t ⟨εθ ⟩ time rate of change of ⟨εθ ⟩

(ii) ⟨U j⟩ ∂

∂x j
⟨εθ ⟩ mean flow advection of ⟨εθ ⟩

(iii) 2α
∂ ⟨U j⟩

∂xi
⟨ ∂θ

∂xi
∂θ

∂x j
⟩ production of ⟨εθ ⟩ by mean velocity gradients

(iv) 2α
∂ ⟨Θ⟩
∂x j

⟨ ∂u j
∂xi

∂θ

∂xi
⟩ production of ⟨εθ ⟩ by mean scalar gradients

(v) 2α
∂ 2⟨Θ⟩
∂xi∂x j

⟨u j
∂θ

∂xi
⟩ mixed production of ⟨εθ ⟩

(vi) 2α⟨ ∂u j
∂xi

∂θ

∂xi
∂θ

∂x j
⟩ production of ⟨εθ ⟩ by turbulent vortex stretching

(vii) −α
∂ 2

∂x j∂x j
⟨εθ ⟩ molecular transport of ⟨εθ ⟩

(viii) ∂

∂x j
⟨u jεθ ⟩ turbulent advection of ⟨εθ ⟩

(ix) 2α2⟨ ∂ 2θ

∂xi∂x j
∂ 2θ

∂xi∂x j
⟩ molecular dissipation of ⟨εθ ⟩

tial condition is statistically homogeneous in the x-direction
(only). Moreover, all scalar-field statistics studied in this work
are non-stationary, due to the evolution in time of the scalar
fields from the unmixed to the mixed states. Thus the underly-
ing symmetries and ensuing statistical homogeneities associ-
ated with the different initial conditions, as well as the statisti-
cally non-stationary nature of the scalar field, must be taken
into account when analyzing the results. A specific conse-
quence is that one can no longer volume-average the terms in
eq. (4) if one wants to examine the evolution of all its nine
constituent terms, because all but three of them (the first, sixth
and ninth), will be zero when volume-averaged. Secondly,
there is no “universal” approach to spatial averaging that can
be employed in this analysis that will not eliminate some of
the nine terms in eq. (4) in some of the scalar fields. For
example, were one to average scalar-field statistics in the z-
direction, certain terms in the ⟨εθ ⟩ budget (such as production
by the mean scalar gradient) will become zero for the ICz case,
only, because ∂ ⟨·⟩z/∂ z = 0 (by definition). Lastly, given that
volume-averaging is no longer feasible and we will therefore
employ averages taken over (spatial) planes (at specific loca-
tions within the channel) to investigate the terms in eq. (4), the
statistical convergence of the data is reduced, given that aver-
ages will be taken over less data. To address this, local time
averages will be employed (i.e. averaging the value of a term in
the budget of ⟨εθ ⟩ from τ ′ = 0 to τ ′ = τ), which will improve
convergence of the data, while retaining its time-dependence.
Moreover, figure 5 will also calculate local spatial averages

after having performed the time-average, which, when calcu-
lated in this way, does not eliminate terms and further aids
convergence.

Having discussed the issue of averaging, we plot in fig-
ure 5 the contributions of the terms in the budget of ⟨εθ ⟩
(eq. (4)) to further investigate the evolutions of ⟨εθ ⟩ depicted
in figure 4. (A legend corresponding to the 9 terms of eq.
(4) is given in table 1.) Multiple observations can be made
from the plots therein to provide insight into the evolutions
of ⟨εθ ⟩. For τ > 1, ⟨εθ ⟩ is dominated by a balance between
the production of ⟨εθ ⟩ arising from turbulent vortex stretch-
ing, and dissipation of ⟨εθ ⟩ by molecular processes, as first
predicted by Corrsin (1953). However, further details bear
noting. Firstly, when considering the relative magnitudes of
the various terms for the different initial conditions, it is clear
that the magnitudes of the terms for the ICx condition are the
largest, followed by those corresponding to the ICz initial con-
dition. Those corresponding to the ICy initial condition are the
smallest. Using the peak value of the molecular dissipation of
⟨εθ ⟩ (i.e. term (ix), light green line) as a reference, its value for
ICx is 4× 10−5, for ICz is 2× 10−5, and for ICy is 1× 10−5.
Thus the larger values of all terms in the scalar field arising
from the ICx initial condition lead to the largest peaks of ⟨εθ ⟩,
as well as the fastest decay rates of ⟨εθ ⟩, consistent with figure
4. Moreover, the converse holds for ICy, which experiences
the lowest peak value of ⟨εθ ⟩ and slowest decay rates. Sec-
ondly, one can observe in figure 5 that the two dominant terms
(production of ⟨εθ ⟩ by turbulent vortex stretching and molec-

4



12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan (Online), July 19-22, 2022

(a) ICx (b) ICy (c) ICz

Figure 6: Evolution in time of the time-averages of all 9 terms in the scalar dissipation rate budget in which statistical
moments (⟨·⟩) are assessed on the y-z plane at x/Lx = 0.50, i.e. 1

τ

∫
τ

0 Term dτ ′, where all averages (⟨·⟩) in Term are given
by ⟨·⟩= ⟨·⟩y,z.

ular dissipation of ⟨εθ ⟩) peak at later times for ICy (at τ > 1)
than they do for the ICx and ICz cases (which peak at τ < 1).
This behaviour is also consistent with the evolutions of ⟨εθ ⟩ in
figure 4, noted above.

We further investigate the budget of the scalar dissipation
rate for the three initial conditions by plotting the time evolu-
tion of terms when spatially averaged over a single y-z plane in
figure 6. Note that the plane over which the spatial averaging
is performed in figure 6 is parallel to the interface between the
“black” and “white” fluids in the ICx initial condition, and lo-
cated at the mid-plane of the channel in the x-direction (i.e.
x/Lx = 0.5), i.e. the location of one of the two interfaces
between the “black” and “white” fluids at τ = 0 for ICx. In
figure 6, it is first worth noting the qualitative similarities of
the evolutions of the terms in the ⟨εθ ⟩ budget for the ICy and
ICz initial conditions. These two subfigures exhibit similar be-
haviours due to the absence of terms associated with spatial
gradients of statistical moments in the directions of the aver-
aging in the respective figures. We also note that analogous
similarities are observed when reproducing the equivalent of
figure 6, but spatial averaging in the other two (x-z and x-y)
mid-planes (not shown). However, in contrast to figures 6(b)
and 6(c), figure 6(a) is dominated at early times by mean-flow
advection of ⟨εθ ⟩ and turbulent advection of ⟨εθ ⟩. This will be
further discussed with respect to figure 7, which follows.

To investigate the evolution of the terms in the ⟨εθ ⟩ bud-
get that are not subjected to such an artefact, we plot in figure 7
their evolution in time assessed on the mid-plane correspond-
ing to the initial location of the interface for the three initial
conditions. It reveals that figure 7(a), which corresponds to the
ICx initial condition, is significantly different from those cor-
responding to ICy (7(b)) and ICz (7(c)), which are quite sim-
ilar. Whereas the dominant terms in figures 7(b) and 7(c) are
the molecular dissipation of ⟨εθ ⟩, the production of ⟨εθ ⟩ by
turbulent vortex stretching, production of ⟨εθ ⟩ by mean scalar
gradients, the rate of change of ⟨εθ ⟩ with time, and turbulent
advection of ⟨εθ ⟩, figure 7(a) is distinctly different. Of partic-
ular note is the importance played by mean-flow advection of
⟨εθ ⟩ at early times, which is dominant for τ < 0.2, and bal-
anced by turbulent advection of ⟨εθ ⟩. Given that fully devel-
oped turbulent channel flow must be unidirectional, the ab-
sence of the mean-flow advection term in the other directions
is to be expected. However, the early dominance of this term
is noteworthy. In this respect, consideration of the evolution
in time of the interface(s) between the “black” and “white”
fluids is beneficial. For the ICy case, the ⟨Θ⟩ = 0 plane will
not change in time and will be advected along the y/h = 1
plane as the flow evolves, but remaining at the same location

as the initial interface. However, the evolution of the scalar
field in time is quite different for ICx. The interface remains
“anchored” to the walls due to the no-slip condition, and is
strongly stretched in the x-direction by the mean flow, while
being stirred by the turbulence. Thus as the interface is ad-
vected downstream, it can “blow by” a given downstream lo-
cation multiple times. This effect can be observed by the os-
cillations in the unsteady term (dark blue line), and to a lesser
degree the mean flow advection terms (red line) in figure 7(a).
It is worth noting that the period of the observed oscillation
is indeed equal to half of the channel’s “flow-through” time
(i.e. 1

2 τFT ≡ 1
2 (Lx/⟨U⟩y/h=1)uτ/h = 0.17). With respect to

ICz, the ⟨Θ⟩ = 0 plane will be advected downstream the mid-
plane of the channel (z = 0.5Lz), although its top and bottom
edges will remain anchored to the walls of the channel, thus
emulating aspects of both ICx and ICy.

Given that the results in figure 7 are all averages taken at
the three midplanes of the channel, they are somewhat anoma-
lous. For example, when averaging in the x- and z-directions
at y/h = 1 (as is the case in figure 7(b)), there can be no con-
tribution to ⟨εθ ⟩ arising from production by the mean velocity
gradient because ∂ ⟨U⟩/∂y = 0 at that one location (and no
other). Thus it bears investigating the budget of the scalar dis-
sipation rate for the three initial conditions at non-mid-plane
locations. To this end, the evolutions of the terms in the budget
of the scalar dissipation rate are plotted for ICx spatially aver-
aged over an y-z plane located at x/Lx = 0.25 in figure 8(a), for
ICy spatially averaged over an x-z plane located at y/h = 0.5
in figure 8(b), and for ICz spatially averaged over an x-y plane
located at z/Lz = 0.25 in figure 8(c). The aforementioned pe-
riodic passing of the interface over the measurement plane for
the ICx case is even more prominent in figure 8(a). However,
figures 8(b) and 8(c) also reveal another phenomenon that ex-
plains the slower evolutions of ⟨εθ ⟩ for the ICy and ICz cases.
In these two non-mid-plane cases, one observes an initial pe-
riod of “inactivity.” The initial period in which the terms in the
budget of ⟨εθ ⟩ are effectively zero results from the interface
having not yet “reached” the measurement location. In these
two cases, the interface can only travel laterally by the action
of the turbulence, given that there is no mean velocity in the
y- and z-directions. This phenomenon i) is not observed for
the ICx case, because the interface can be advected by the non-
zero mean flow, and ii) further explains the slower evolutions
of ⟨εθ ⟩ for the ICy and ICz cases, given that regions located
increasingly far away from the interface experience a delay
before they begin to mix. This latter effect therefore serves
to retard the total mixing, because the interface surface is not
normal to the mean velocity vector.
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(a) ICx (b) ICy (c) ICz

Figure 7: Evolution in time of the time-averages of all 9 terms in the scalar dissipation rate budget in which statistical
moments (⟨·⟩) are assessed on the mid-plane corresponding to the initial location of the interface in the initial condition:
1
τ

∫
τ

0 Term dτ ′. (a) ICx with statistical moments evaluated over the y-z plane at x/Lx = 0.50, (b) ICy with statistical
moments evaluated over the x-z plane at y/h = 1, and (c) ICz with statistical moments evaluated over the x-y plane at
z/Lz = 0.50.

(a) ICx (b) ICy (c) ICz

Figure 8: Evolution in time of the time-averages of all 9 terms in the scalar dissipation rate budget in which statistical
moments (⟨·⟩) are assessed in planes parallel to the initial location of the interface in the initial condition, but away from
the mid-plane: 1

τ

∫
τ

0 Term dτ ′. (a) ICx with statistical moments evaluated over the y-z plane at x/Lx = 0.25, (b) ICy with
statistical moments evaluated over the x-z plane at y/h = 0.5, and (c) ICz with statistical moments evaluated over the x-y
plane at z/Lz = 0.25.

CONCLUSIONS AND FUTURE WORK
In an attempt to better understand mixing within wall-

bounded flows, with the ultimate goal of optimizing mixing
processes, the present work has investigated the mixing of a
scalar within a fully developed turbulent channel flow when
subjected to three different initial conditions. A study of the
temporal evolution of the terms in the scalar dissipation rate
budget for the different initial conditions investigated why the
ICx case mixed most rapidly, and the ICy case most slowly. It
was found that the magnitude of the terms in the ⟨εθ ⟩ budget
were consistent with both large values of ⟨εθ ⟩ and rapid de-
cay rates of ⟨εθ ⟩. The stretching of the interface by the mean
velocity field was also hypothesized to play an important role.
To promote mixing in a wall-bounded flow, it is recommended
that scalar interfaces be aligned normal to the mean velocity
vector, to enhance the stretching of the interface. Whereas the
general trends in the unmixedness and mix-norm were similar
to those of ⟨εθ ⟩ for τ > 1, future work should investigate their
relationship during the initial phases of the mixing process.
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Mathew, G., Mezić, I. & Petzold, L. 2005 A multiscale mea-
sure for mixing. Physica D 211, 23.

6

http://channelflow.org/
http://channelflow.org/

