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ABSTRACT
The identification of modal and non-modal mechanisms

via stability analysis is an essential component for the predic-
tion of boundary layer transition to turbulence. Here, we use
resolvent analysis to study mechanisms that underpins flow
streaks in the leading-edge region of an axisymmetric bluff
body. Contrary to the receptivity of TS waves, the amplifica-
tion of zero frequency disturbances is found to increase with
the body bluntness, and thus becomes dominant at large blunt-
ness. Compressibility effects are also studied, showing that,
for subsonic flows, disturbance amplification increases with
the Mach number, with peak amplification occurring at lower
azimuthal wavenumbers.

Introduction
Boundary layer (BL) transition can occur via different

mechanisms. If external disturbances, such as incoming tur-
bulence, are small, modal mechanisms, in the form of grow-
ing instability waves are usually responsible for transition. In
incompressible flows, the only unstable mode is the Tollmien-
Schlichting (TS) wave. In supersonic flows, at sufficiently high
Mach number, there is also a family of unstable modes, under-
stood as acoustic waves trapped in the BL, which were first
identified by Mack (1963). The receptivity to acoustic dis-
turbances has been studied both for TS (Goldstein, 1985) and
Mack waves (Fedorov & Khokhlov, 1992).

If larger disturbances are present, non-modal mecha-
nisms are often responsible for triggering transition. They
are characterized by a transient amplification associated with
a linear combination of stable modes, a phenomena known
as transient-growth, and which has been characterized for
both incompressible (Andersson et al., 1999) and compress-
ible (Hanifi et al., 1996) flows.

Which of the two, modal or non-modal mechanisms, are
responsible for transition depends on the amplitude of the in-
cident disturbances and the receptivity of each mechanism.
There are several mechanisms by which free-stream distur-
bances enter the boundary layer. For low turbulence levels, the
dominant one is likely localized in the leading edge (Brandt

et al., 2004). The receptivity magnitude will thus provide
the initial amplitude of waves involved in modal and non-
modal mechanisms. It is also important for scenarios where
transition is observed at the leading edge. Due to the strong
favourable pressure gradient, which stabilizes TS waves, and
the relatively low local Mach number, due to slower veloci-
ties and higher temperatures near the stagnation point, transi-
tion at the leading edge is believed to be caused by non-modal
mechanisms (Paredes et al., 2017). Most studies considering
this possibility have been mainly concerned with transition in-
duced by wall roughness.

Aiming to complement previous studies that focused on
the receptivity of TS, Mack, and cross-flow instability waves,
we here focus on the receptivity of streaks in blunt bodies in
non-swept configurations, using a paraboloid body as a test
case. A large range of the parameter space was studied, in-
cluding varying Reynolds and Mach numbers. A description
of the method used, results obtained, and their discussion are
presented next.

Numerical method
The linearized Navier-Stokes equations can be compactly

written as,

∂q
∂ t

(x, t) = Aq(x, t)+ f (x, t), (1)

where q is a vector containing the flow density, velocities, and
temperature, and f contain forcing terms. Assuming cylindri-
cal symmetry and using the ansatz

q(x, t) = q̂(z,r)e−iωt+mφ , (2)

where r,φ , and z are the cylindrical coordinates, (1) is written
as

(−iω−Am)q̂ = f̂ , (3)
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where Am is the compressible linearized Navier-Stokes opera-
tor for the m-th azimuthal component. An input-output relation
is obtained re-writing (3) as

q̂ = Rm(ω) f̂ , (4)

where Rm(ω) = (iω−A)−1 is the resolvent operator.

A forcing term is said to be optimal if it maximizes the
Rayleigh quotient

σ(ω) =
‖q̂‖∥∥ f̂
∥∥ =

∥∥Rm(ω) f̂
∥∥∥∥ f̂

∥∥ , (5)

where q̂ and f̂ satisfy (4). The value σ is usually referred as
the gain associated with the forcing/response pair. Suboptimal
forcing components maximize the same ratio, with the added
constraint of being orthogonal to the leading forcing mode.

Gains and forcing/response mode pairs are typically ob-
tained from a singular value decomposition (SVD) of the
weighted resolvent operator Rm

′(ω) = W 1/2Rm(ω)W−1/2,
where W is a matrix representing an energy norm and, for
non-uniform meshes, integration weights. However, for two-
dimensional systems, the matrix inversion in (3) and the SVD
of R′m become prohibitively costly. Instead, the leading singu-
lar values and modes are obtained using an iterative algorithm,
such as the power iteration or the Arnoldi algorithms, based on
solutions of the linear problem (3). These solutions are typi-
cally obtained using an LU decomposition of Rm to reduce the
overall cost.

We use a code developed by Schmidt & Rist (2011) to
study the modal stability of streamwise corner-flows, which
was later extended to non-modal stability analysis (Schmidt &
Rist, 2014), and resolvent analysis in Schmidt et al. (2018). An
important difference with respect to the original code is, that
here, the geometry cannot be described by a cartesian mesh,
for which the use of finite-differences schemes is most natu-
ral. Instead, here an original rectangular domain, described by
the coordinates ξi, is mapped onto the desired geometry, re-
sulting in curvilinear coordinates x j = x j(ξi). The mapping is
illustrated in figure 1.

In order to model the system in the physical domain (x j),
differentiation matrices need to be constructed based on the
finite differences used in the original domain (ξi). First order
derivatives with respect to x j are obtained from the derivatives
in the original domain as

∂xi g = J−1
i j ∂ξ j

g, (6)

where Ji j = ∂x j/∂ξi represents the mapping Jacobian, g is a
scalar field, and the Einstein summation convention is used.
The Jacobian J is computed numerically and then inverted to
obtain J−1.

Second derivatives can be obtained by re-applying (6).
However, when using this approach the effective stencil for
second derivatives doubles, which is an undesirable feature
when used to numerically construct the operator Am, as it be-
comes less sparse, increasing the computational cost. Instead,

second derivatives are computed as

∂xi ∂x j g = ∂xi

(
J−1

jq ∂ξp
g
)

=
(

∂xi J
−1
jp

)
∂ξp

g+ J−1
jp

(
∂xi ∂ξp

g
)

=
(

∂xi J
−1
jp

)
∂ξp

g+ J−1
jp J−1

iq ∂ξq
∂ξ j

g,

(7)

where ∂xi J
−1
jp is computed using the matrix identity

∂xi J
−1 =−J−1 (∂xi J)J−1. (8)

The term ∂xi J contains information about the second
derivatives of the mapping, and reads

∂xi J jk =
∂ 2x j

∂xi∂ξk
= J−1

im
∂ 2x j

∂ξm∂ξk
. (9)

This term is also computed numerically.
With this formulation, the effects of the mapping is com-

puted explicitly, and the differentiation matrix retains its spar-
sity.

Throughout this work, a 4-th order differentiation scheme
is used to numerically compute the derivatives, using a cen-
tered scheme in the interior the domain and biased stencils on
the boundaries.

Geometry and baseflow
The body surface is given by

x = (z2 + y2)−1/4. (10)

The free-stream flow moves towards +z with unit velocity.
The problem is made non-dimensional with respect to the
freestream density, viscosity and velocity and the diameter of
curvature of the leading edge.

The inviscid and incompressible flow around the body
is obtained analytically using parabolic coordinates, (σ ,τ,φ),
given by

z+ ir =(σ + iτ)2, (11)

r =
√

(x2 + y2), (12)

φ = tan−1(y/x). (13)

The body surface corresponds to σ = σ0 = −1/2, and the
cylindrical coordinates are recovered as z = σ2− τ2 and r =
2τσ . The flow potential function, ψ , is given by the solution
of the Laplace equation,

∇
2
σ ,τ,φ ψ =

1
σ

∂

∂σ

(
σ

∂ψ

∂σ

)
+

1
τ

∂

∂τ

(
τ

∂ψ

∂τ

)
+

∂ 2ψ

∂φ 2 , (14)

with no penetration boundary condition at the body surface,
∂ψ

∂σ
= 0 for σ = σ0, and the requirement that far from the body
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Figure 1: Illustration of mapping between the original (ξi ) and desired (xi) meshes.
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(a) Inviscid flow (b) Re = 100

Figure 2: Velocity magnitude of the baseflow for the inviscid and Re = 100 incompressible flows. Base flows for the
compressible cases are qualitatively similar, with an increase in temperature, density and viscosity in the regions of low
flow velocity, i.e., the stagnation point and in the boundary layer.

(a) (b)

Figure 3: Boundary layer displacement thickness (a) and edge velocity (b).

to flow corresponds to a uniform right-moving flow, i.e. ψ =
z = (σ2− τ2) at σ → ∞. The solution is given by

ψ = σ
2− τ

2 +2σ
2
0 log(σ). (15)

From (15), the influence of the paraboloid body on the
flow scales decays roughly with the logarithm of the wall
distance. Accurately capturing this effect numerically would
require a large computational domain if uniform free-stream
boundary conditions were used as inflow of a viscous incom-
pressible simulation domain. To reduce the required computa-
tional domain needed, the inviscid solution was thus used as a
boundary condition for the viscous problem.

Viscous incompressible baseflows were obtained by time-
marching the incompressible Navier-stokes equations in time
until the norm of the velocity time-derivative becomes smaller

than 10−8. No-slip boundary conditions were applied at the
body surface and outflow conditions on the right-most edge of
the domain. Integration was carried out using the the axisym-
metric formulation of the spectral code Nek5000 (Fischer &
Lottes, 2005). The inviscid and the Re = 100 baseflows are
shown in figure 2. The baseflows for higher values of Re look
similar, but with thinner boundary layers. The computational
domain and mesh discretization used to obtain the baseflows
for each Reynolds number were chosen to guarantee a domain
considerably larger than the boundary layer around the body
and to have sufficient grid points inside it.

The boundary layer displacement thickness (δ ∗) and
boundary layer edge velocities (Ue) as a function of the dis-
tance to the leading edge and the Reynolds number is pre-
sented in figure 3. The BL thickness for Re > 5000 is seen
to scale with Re−1/2, as typically observed for flat plates. The
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solution at the boundary layer edge closely follows the invis-
cid solution at the surface and is nearly independent of the
Reynolds number

Reynolds number effects
To study the effect of the Reynolds number on the lead-

ing forcing/response modes close to the stagnation point, the
physical domain was initially limited downstream to z = 1.
As will be soon reported, the forcing mode extends further
upstream for increasing Reynolds numbers, and thus the up-
stream boundary has been moved further from the body for
larger values of Re. An extended domain, truncated at z = 2,
was used to verify the impact of the domain truncation.

Figure 4a shows the gains of the optimal forcing/response
pair as a function of Reynolds number and the azimuthal mode.
Figure 4b shows that maximum gains and their azimuthal wave
numbers increase with the Reynolds number. Figure 4c shows
that the same gain and azimuthal wavenumber trends are ob-
served when the domain is increased, although at higher nomi-
nal values. To explore these trends, we first illustrate the struc-
ture of forcing and response modes.

Figure 5 shows the leading forcing and response modes
for the flow with Re = 60000 and azimuthal number m = 26.
The forcing mode is mainly located upstream of the body and
mainly generates vortical disturbances aligned in the radial di-
rection, while the response is concentrated on the thin bound-
ary layer, where the velocity perturbations are aligned with the
base flow.

The dynamics of the system can be described as follows:
radially-aligned vortical disturbances are generated upstream
of the body and are convected into the BL close to the stag-
nation point. Once in the boundary layer, these vortical dis-
turbances are aligned with the base flow, as, near the stagna-
tion point, the velocity profile of the boundary layer is mainly
radial, and thus triggers the lift-up mechanism which gen-
erates wall-aligned streaks. The trend of the forcing mode
having negligible azimuthal components was observed for all
Reynolds numbers at the peak azimuthal mode.

The sub-optimal modes are shown in figure 6. Their struc-
ture is analogous, with sub-optimal modes showing radial os-
cillations in the forcing components, and amplifications 3 to 5
times lower.

The basic mechanism for all Reynolds numbers remains
approximately the same, with minor variations. Figure 7
shows the forcing energy for the leading mode for different
Reynolds numbers. If, on one hand, it could be expected
that an increase in the Reynolds number would lead to an up-
stream extension of the forcing support, as the lower dissipa-
tion levels may favour a spreading of the forcing terms, on
the other, higher azimuthal wave number reduces the distance
between vortical disturbances in the azimuthal direction, in-
creasing shear and thus dissipation. These two trends seem to
partially compensate for each other, and the forcing domain
remains approximately the same. One notable difference is
that for higher Reynolds numbers the forcing mode slightly
approaches the r = 0 axis. This can be interpreted as perturba-
tions impinging closer to the stagnation to penetrate the thinner
BLs.

Compressibility effects
In order to investigate the influence of compressibility on

the lift-up mechanism, baseflows for Mach numbers 0.3, 0.6
and 0.9 were obtained using the SU2 code (Economon et al.,
2016). Figure 8 shows the leading gains for these conditions

using Chu’s and the kinetic energy norms. In the latter, only
forcing associated with the momentum equations and flow ve-
locities are used in the norm.

Gains obtained using Chu’s energy norm are higher than
those obtained using only the kinetic energy norm. For the
Mach 0.3 and Mach 0.6 cases, the gains obtained with the ki-
netic energy norm are approximately the same as those ob-
tained with Chu’s norm for a lower Mach number. In partic-
ular, this suggests that the main effect of compressibility for
Mach numbers up to 0.3 is to couple the perturbations of den-
sity and temperature to those of velocities, with negligible in-
fluence of the baseflow. The preferred azimuthal number is not
affected by compressibility for Mach numbers up to 0.6.

For the Mach 0.9, a larger discrepancy is observed, and
the optimal disturbances are found at a lower azimuthal num-
ber. The difference cannot be attributed to local variations in
viscosity, as at the stagnation point it increases only by≈ 15%,
and thus is likely due to more complex phenomena, possibly
related to density variation, which is 40% greater at the stag-
nation point than on the freestream.

Conclusions
Non-normal mechanisms for perturbation amplification

near an axisymmetric leading edge of the blunt body were
studied. Using a model paraboloid body, identification of lead-
ing forcing and response modes reveals that the lift-up mech-
anism is optimally excited upstream of the body, creating vor-
tical disturbances that are convected into the boundary layer at
the stagnation point. This mechanism is different from those
studied by Andersson et al. (2001), where streamwise vortical
disturbances are generated directly inside the boundary layer,
and Brandt et al. (2004), where it is excited by non-linear in-
teractions of the free-stream turbulence, and that of Paredes
et al. (2017), where optimal perturbations inside the boundary
layer are computed, which could be excited by wall roughness
elements.

The scaling of the optimal gain and associated azimuthal
number found in this study contrasts with those found on de-
veloped flat-plate boundary layers. On the latter, optimal gains
are seen to scale with Re ∝ Re2

δ ∗ , and the spanwise wavelength
is proportional to the BL thickness. On the paraboloid body,
the gains are found to scale with Re1/2 ∝ Reδ ∗ , thus showing a
considerably slower growth with Re. The azimuthal wavenum-
ber, which for a given position at the body is inversely propor-
tional to the spanwise wavelength, scales with Re1/4 ∝ δ ∗1/2.

The lower gains are explained by the domain truncation:
in developed boundary layers the streamwise streaks are con-
tinuously forced by vortical disturbances. Both these struc-
tures are damped by viscosity at a rate of Re−1, and thus have a
total length ∝ Re. For larger Re vortical disturbances excite the
streaks via the lift-up mechanisms for a longer time, resulting
in the classical Re2 gain scaling. The finite domain used here
reduces the efficacy of the lift-up mechanism, and thus reduc-
ing the overall gain. This suggests that leading edge transition,
for which the relevant dynamics necessarily occurs in a short
distance, will exhibit this slower scaling with respect to Re
and/or free-stream turbulent intensity. The relatively low mag-
nitude of the gains can be explained by two different mecha-
nisms. The first one is the flow curvature, which pushes fast
streaks away from the body and slow streaks closer to it, coun-
teracting the generated vortical disturbances. This mechanism
stabilizes the flow, which should further reduce the gains. The
second is the radial evolution of the boundary layer. The con-
servation of the azimuthal wavenumber, as opposed to that of
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(a) (b) (c)

Figure 4: Optimal gains for different Reynolds numbers and azimuthal numbers for the small domain (a), and trends
observed in the peak values with Reynolds numbers (b). In (c), the trends found for the extended domain are presented,
with data from (b) added in black for reference.

Figure 5: Forcing (top) and response (bottom) modes for Re = 60000 and m = 26. The responses in the axial, azimuthal
and radial directions, and the corresponding forcing components, are shown from left to right. The radial, azimuthal
and axial directions contain 84%, 1% and 15% of the forcing energy, and 71%, 7% and 23% of the response energy,
respectively.

Figure 6: Optimal and suboptimal forcing modes for Re = 60000. Only the radial forcing component is shown for brevity.
The computational domain used is insufficient to converge the rightmost mode, due to its larger radial structure. However,
as the suboptimal modes have considerably lower gains, no effort to properly converge them was carried out.
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(a) Re = 60000 (b) Re = 180000 (c) Re = 300000

Figure 7: Forcing energy density for the optimal azimuthal wavenumbers at different Reynolds numbers. The plots are
normalized as to have unit energy.

Figure 8: Gains using Chu’s (solid) and kinetic energy
(dashed) norms for Re = 60 000 and different Mach
numbers.

the span-wise wavenumber in the flat-plate case, means that
a given mode has different spanwise lengths at each body lo-
cation. Thus, the length, measured in boundary layer thick-
nesses, that maximizes the lift-up effect can only be attained
at specific locations. Although this is also the case in spatially
evolving boundary layers, the evolution of the BL thickness is
usually small, contrasting with the evolution of the paraboloid
body radius, which varies very fast near the leading edge.

Finally, compressibility effects for subsonic flows were
investigated. It is observed that compressibility increases per-
turbations amplification and reduces the optimal azimuthal
wavenumber when the flow approaches sonic speeds.
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