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ABSTRACT
Flow fields obtained by time-resolved particle image ve-

locimetry (PIV) and other experimental methods can contain
gaps or other types of undesired artifacts. To reconstruct flow
data in the compromised or missing regions, we propose a
data completion method based on spectral proper orthogonal
decomposition (SPOD). The proposed approach leverages the
temporal correlation of the SPOD modes with preceding and
succeeding snapshots, their spatial correlation with the sur-
rounding data in the field of view. For each gap, the algorithm
first computes the SPOD of the remaining, unaffected data.
In the next step, the compromised data is projected onto the
basis of the SPOD modes. This corresponds to a local inver-
sion of the SPOD problem and yields expansion coefficients
that permit the reconstruction of the missing data. This lo-
cal reconstruction is successively applied to each gap. After
all gaps are filled in, the procedure is repeated in an iterative
manner until convergence. The method is demonstrated on
time-resolved PIV data of turbulent cavity flow obtained by
Zhang et al. (2019) with randomly added gaps that correspond
to 1%, 5%, and 20% of data loss.

INTRODUCTION
Gappy data reconstruction techniques find wide use in the

completion of partially missing or otherwise compromised ex-
perimental data. Data from particle image velocimetry (PIV),
the focus of this work, for example, can exhibit artifacts or
gaps due to the obstruction of the light path by objects, reflec-
tions of light from the surface of objects, the inaccessibility of
regions for the imaging system, irregular seeding, and other
sources. Standard mathematical tools for gappy data recon-
struction include basic interpolation (Yates, 1933) and least-
square estimation. Techniques that were devised specifically
for the task of gappy data reconstruction include optimal in-
terpolation (Reynolds & Smith, 1994) and Kriging (Oliver &
Webster, 1990).

The use of proper orthogonal decomposition in conjunc-
tion with least-squares estimation for data reconstruction was
proposed by Everson & Sirovich (1995). This original gappy

POD algorithm was later extended by Venturi & Karniadakis
(2004) and shown to outperforms Kriging for the reconstruc-
tion of cylinder flow with up to 50% of missing data. Gappy
POD has since become an essential component of a number
of model reduction methods that use POD modes as their ba-
sis (Chaturantabut & Sorensen, 2010; Benner et al., 2015). In
ocean sciences, a similar method was independently developed
by Beckers & Rixen (2003).

Spectral proper orthogonal decomposition (SPOD) lever-
ages the temporal homogeneity of statistically stationary pro-
cesses to compute modes that are perfectly correlated in both
space and time. The use of this frequency-domain version of
POD, which has recently been popularized by Towne et al.
(2018) and Schmidt et al. (2018), for gappy data reconstruc-
tion is at the center of this study. The proposed algorithm
is fundamentally different from those of Everson & Sirovich
(1995) and Venturi & Karniadakis (2004), and found capable
of recovering large sections of missing data in a long time se-
ries of the turbulent flow over an open cavity.

Time-resolved particle image velocimetry (TR-PIV) was
performed to obtain the streamwise velocity field in the cen-
ter plane of the Mach 0.6, turbulent flow over an open cavity
with a length-to-depth ratio of L/D = 6 and a width-to-depth
ratio of W/D = 3.85. The sampling rate was 16 kHz and a
total number of 16,000 image pairs were acquired to compute
the velocity vector field. We refer to Zhang et al. (2019) and
Zhang et al. (2017) for more details on this specific measure-
ment campaign and the experimental setup, respectively.

SPECTRAL PROPER ORTHOGONAL DECOM-
POSITION

A detailed theoretical discussions of SPOD theory and
best practices for its applications can be found in Towne et al.
(2018) and Schmidt & Colonius (2020), respectively. We pro-
vide an outline of a specific procedure of computing the SPOD
based on Welch’s method (Welch, 1967). Given a fluctuating
flow field qi = q(ti), where i = 1,2, · · · ,nt , that is obtained
by subtracting the temporal mean q̄ from each snapshot of the
data, the first step of the standard Welch approach is to seg-

1



12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan (Online), July 19-22, 2022

ment the data into nblk overlapping blocks, each containing
nfft snapshots. Next, we compute a windowed temporal dis-
crete Fourier transform and arrange all the Fourier realizations
at the l-th frequency, q̂( j)

l , into a matrix,

Q̂l =
[
q̂(1)

l , q̂(2)
l , · · · , q̂(nblk)

l

]
. (1)

The SPOD modes, Φl , and associated energies, λ l , can
be computed as the eigenvectors and eigenvalues of the CSD
matrix Sl =

1
nblk

Q̂lQ̂∗l W, where W is a positive-definite Her-
mitian matrix that accounts for the component-wise and nu-
merical quadrature weights. In practice, the number of spatial
degrees of freedom is often much larger than the number of
realizations. In that case, it is more economical to solve the
analogous eigenvalue problem

1
nblk

Q̂∗l WQ̂lΨl = ΨlΛl (2)

for the coefficients ψ that expand the SPOD modes in terms of
the Fourier realizations. In terms of the column matrix Ψl =

[ψ
(1)
l ,ψ

(2)
l , · · ·ψ(nblk)

l ], the SPOD modes at the l-th frequency
are recovered as

Φl =
1
√

nblk
Q̂lΨlΛ

−1/2
l . (3)

The matrices Λl = diag(λ (1)
l ,λ

(2)
l , · · · ,λ (nblk)

l ), where

by convention λ
(1)
l ≥ λ

(2)
l ≥ ·· · ≥ λ

(nblk)
l , and Φl =

[φ
(1)
l ,φ

(2)
l , · · · ,φ (nblk)

l ] contain the SPOD energies and modes,
respectively. An important property of the SPOD modes
is their orthogonality in their weighted inner product,〈
φ
(i)
l ,φ

( j)
l

〉
= φ

(i)
l Wφ

( j)
l = δi j. The associated norm is de-

noted by ∥ · ∥2.

Data reconstruction
The cornerstone of the present work is the reconstruction

of the original data from its SPOD. This inversion of the SPOD
is discussed by Nekkanti & Schmidt (2021) in the context
of frequency-time analysis, and different applications that in-
volve partial reconstructions including filtering and denoising.
The Fourier realizations at each frequency are reconstructed
from the SPOD modes as Q̂l = ΦlAl . Here, Al is the matrix
of the (scaled) expansion coefficients computed as

Al =
√

nblkΛ
1/2
l Ψ

∗
l , or (4)

Al = Φ
∗
l WQ̂l . (5)

The expansion coefficients can be saved during the computa-
tion of SPOD using equation (4) or can be recovered later by
projecting the Fourier realizations onto the modes using equa-
tion (5). Using the expansion coefficients aik contained in A at
any given frequency, the k-th block can be reconstructed as

Q(k)=F−1

[(
∑

i
aikφ

(i)

)
l=1

,

(
∑

i
aikφ

(i)

)
l=2

, · · · ,

(
∑

i
aikφ

(i)

)
l=nfft

]
,

(6)

where F−1 is inverse windowed Fourier transform. Finally,
the time series is reconstructed from the data segments by
computing the average of the reconstructions from overlap-
ping blocks, weighted by the relative value of their windowing
function (Nekkanti & Schmidt, 2021).

ALGORITHM: GAPPY SPOD
(i) Segment the time series into overlapping blocks and

compute the temporal Fourier transform of each block
(if not computed in the previous iteration).

(ii) Proceed to the n-th gap and choose all the realizations of
the Fourier transform that are not affected by this gap.

(iii) Compute the SPOD from all the Fourier realizations that
are not affected by this gap (equations (2) and (3)) and
save the corresponding expansion coefficients (equation
(4)).

(iv) Compute the SPOD expansion coefficients for blocks af-
fected by the n-th gap by projecting their Fourier trans-
forms onto the SPOD basis (equation (5)).

(v) Reconstruct the affected blocks by inverting the SPOD
(equation (6)) from the expansion coefficients computed
in (iii) and (iv); replace the regions affected by the n-th
gap.

(vi) (local loop) Go to (iv) to update the expansion coeffi-
cients now that the data is reconstructed in the affected
regions until convergence criterion based on change of
reconstruction of n-th gap is met.

(vii) (inner loop) Set n← n+1 and go to (i) until all gaps are
reconstructed.

(viii) (outer loop) Set n = 1 and go to (i); repeat until con-
vergence criterion based on change of reconstruction be-
tween outer loop iterations is met.

Error and Convergence metrics
Define G as the index set corresponding to all gappy snap-

shots and Gn ⊂ G as the subset of indices corresponding to
the n-th gap. The following error and convergence metrics are
used to evaluate the efficacy of our method:

ei =

∥∥∥qi− q̃i

∥∥∥2

2∥∥∥qi

∥∥∥2

2

(relative error of i-th snapshot), (7)

en = ∑
i∈Gn

ei (relative error of n-th gap), (8)

E = ∑
i∈Gn

ei (global relative error), (9)

cn = ∑
i∈Gn

∥∥∥q̃[ j−1]
i − q̃[ j]

i

∥∥∥2

2∥∥∥q̃[ j−1]
i

∥∥∥2

2

(convergence of n-th gap). (10)

Here, q is the original data without gaps, q̃ the reconstructed
data, and superscript [ j] the iteration index. The calculation of
the relative errors, equations (8) and (9), requires knowledge
of the original data, q. For demonstration purposes only, artifi-
cial gaps were introduced in this study, and hence the relative
errors can be computed. The convergence metric defined in
equation (10) does not require the true data and can be eval-
uated even for gappy datasets. Here, the threshold used for
convergence criteria is tol = 10−8.
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Figure 1. Randomly selected gappy regions for the turbulent flow over an open cavity: (a) 1% gappyness; (b) 5% gappyness; (c) 20%
gappyness. Red blocks indicate gaps. The streamwise (x-y) plane is plotted over the snapshot index, i.

Figure 2. Errors and convergence for 5% gappyness, see figure 1(b). The global relative error is shown in (a). Inner (gap-wise)
iterations are denoted by grey dotted lines and outer iterations as blue solid lines. Panels (b-d) show the gap-wise error and convergence
for three randomly selected gaps within the first outer loop.

RESULTS
Figure 1 illustrates the three test cases of randomly gen-

erated gaps accounting for 1%, 5%, and 20% of missing data,
respectively. The gaps are randomly seeded in space. Simi-
larly, the spatial extend and duration of each gaps is randomly
sampled. Gaps are allowed to extend over the entire field-of-
view and up to 600 snapshots. It is clear from figure ??(c)
that every block used for the spectral estimation of the SPOD
contains missing data for the 20% case. Following best prac-
tices (Schmidt & Colonius, 2020), we segment the data into
124 blocks, each block spanning 256 snapshots, and with an

overlap of 50% between snapshots.

We start by exploring the 5% gappyness case, previously
shown in figure 1(b). This case consists of ngaps = 50 ran-
domly seeded and sized gaps. Figure 2 illustrates the local
and global errors and the convergence, of the algorithm. By
local, we refer to the gap-wise iteration, that is, steps (iv)-
(vi) of the algorithm, and by global to the outer iteration loop
over steps (i)-(viii) of the algorithm. Figure 2(a) shows the
global relative error as defined in equation (9) to converge to
cn ≤ tol = 1× 10−8 for all gaps. The gap-wise convergence,
cn, is defined by equation (10). The algorithm requires two
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Figure 3. Global relative error of the gappy SPOD algorithm: (a) 1% gappyness; (b) 20% gappyness. The blue solid lines indicate
the outer iterations.

outer loops, as denoted by the thick blue lines, to reach global
convergence. Each of these outer iterations comprise ngaps in-
ner loops, indicated by grey dotted lines. The global relative
error is normalized according to equation (9), and hence starts
from unity. It can be observed that it decreases as the gaps are
sequentially filled in. The amount by which each inner loop
can reduce the global relative error is dependent on the spatial
location and temporal extent of the corresponding gap. This
explains the sharp drops at the beginning of some local itera-
tion loops. At the end of the first outer loop, the global relative
error reduced by 81%. The second outer loop does not further
reduce the error by an appreciable amount and its final value
hence is E = 19%. Notably, most of the reconstruction error
reduction is accomplished by the end of the first outer loop.

Figure 2(b-d) shows the local relative errors and conver-
gence for three representative gaps during the first outer loop.
The local relative error for all gaps decreases monotonically
from unity to about 20%. An important observation is that the
gap-wise relative error, in all cases, saturates before the con-
vergence criterion of tol = 10−8 is met.

To quantify the reconstruction for 1% and 20% of missing
data cases, we report in figure 3 the global relative error of the
reconstruction as a function of the iteration count. The error
is measured in the same norm that is used for the SPOD and
normalizing by the initial error. Solid blue lines indicate outer
iterations and these two cases require two and five outer iter-
ations, respectively. For the two cases, the relative errors are
reduced to E = 20.3% and 19.4%, respectively. An intuitive
feel for the quality of the reconstruction can be obtained by
relating these numbers to the instantaneous flow fields shown
and discussed in the context of figure 4.

The reconstructions of the data with 20% of missing data
are compared to the original data in figure 4. Four randomly
selected time instances are shown. An extreme example is the
gap highlighted in figure 4(a). It is apparent that a large part of
the field-of-view is missing and an animation of the snapshots
in the vicinity of the gap further confirms that it persists over
a long time. A direct comparison between the reconstructed
field-of-view in figure 4(e) and the original data in 4(i) indi-
cates that the gappy SPOD algorithm was able to fill in the
missing regions with flow structures that to a large degree re-
semble the missing data. Note that the reconstruction has natu-

ral limits that are determined by the physical correlation length
and time scales of the turbulent flow beyond which a recon-
struction is impossible. Comparing the reconstructed to the
original data for the three remaining time instances confirms
that the algorithm is capable of estimating intricate details of
the flow.

SUMMARY AND CONCLUSIONS
An algorithm that exploits the orthogonality and coher-

ence, in space and time, of SPOD to reconstruct missing re-
gions of a flow field is demonstrated on turbulent cavity flow
PIV data. The algorithm is applicable to spatio-temporal data
of stationary flows. It was able to reconstruct about 80% of the
missing energy in randomly seeded and sized gaps that amount
to 1%, 5%, and 20% of missing data. The algorithm converges
almost monotonically for the data and type of gaps investi-
gated. As user inputs, the gappy SPOD algorithm requires
convergence tolerances for the local, gap-wise, and global iter-
ations and the SPOD spectral estimation parameters. A visual
inspection confirmed that the reconstructed flow fields resem-
ble the original data closely.

Building on these promising results, we next plan to com-
pare gappy SPOD to competing methods like gappy POD and
Kriging, investigate the effect of the SPOD spectral estimation
parameters, test the performance in the presence of missing
snapshots, and study the dependence of the reconstruction on
the convergence of the SPOD modes.
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