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ABSTRACT
This study develops a resolvent-based framework that can

be used to reconstruct the velocity field for turbulent channel
flow from limited measurements. For reconstruction, resolvent
modes computed at different frequency and wavenumbers are
pooled into a large database. The Forward Regression with Or-
thogonal Least Squares (FROLS) algorithm is used to sequen-
tially identify modes that best represent the input data. A com-
posite loss function is defined with the error for the second-
order statistics imposed as a soft constraint to the reconstruc-
tion error for velocity field. The amplitude and phase of the
identified modes are then optimized to minimize this compos-
ite loss function. After calibration, the velocity field can be
reconstructed at arbitrary spatiotemporal resolution using the
weighted resolvent modes. The resulting model enables esti-
mation of out-of-plane components of velocity and pressure as
well as reconstruction in other spanwise locations. For proof-
of-concept tests of this method, direct numerical simulation
(DNS) data for turbulent channel flow from the Johns Hopkins
Turbulence Database (JHTDB) are used. Results indicate that
using measurements from multiple planes results in reduced
error for the untrained variables (i.e., non-measured velocity
components, pressure, out-of-plane data). Using an eddy vis-
cosity model to compute resolvent modes results in smoother
statistical profiles, but the velocity field reconstructions do not
reproduce small-scale features.

INTRODUCTION
Turbulent flows are characterized by broadbanded fluc-

tuations in the velocity field in both space and time, which
makes acquisition of spatiotemporally resolved measurements
challenging. For instance, particle image velocimetry (PIV), a
standard technique for acquiring spatial velocity fields, is of-
ten restricted to a limited field-of-view and not typically time-
resolved. Point sensors such as hot-wire anemometers (HWA)
can yield time-resolved velocity measurements, but do not pro-
vide any spatial information. Previous studies have tried to
bridge this gap by reconstructing the flow field between two
consecutive PIV snapshots using physics-based models (Kr-
ishna et al., 2020) or by using Bayesian inference to fuse non-
time-resolved PIV snapshots with time-resolved HWA mea-
surements (Wang et al., 2021). Recent studies have also re-
constructed turbulent flow fields from limited measurements
using machine learning techniques (e.g., Fukami et al., 2021;
Kim et al., 2021).

In this work, we develop a resolvent-based framework for

statistically consistent reconstruction of turbulent flows from
limited measurements. Specifically, we attempt spatiotempo-
ral reconstruction from a limited number of non-time-resolved
two-dimensional, two-component (2D-2C) velocity measure-
ments (c.f., basic PIV). The velocity field is projected onto
resolvent modes and the amplitudes and phases are optimized
to satisfy statistical constraints. The velocity field can then
be reconstructed in the homogeneous spatial directions as well
as in time. Because the resolvent modes are derived directly
from the governing Navier-Stokes equations, and statistical
constraints are enforced, the reconstructed flow field is ex-
pected to be physically and statistically consistent.

For proof-of-concept tests of this method, we use DNS
data for turbulent channel flow at Reτ = uτ h/ν = 1000 avail-
able from the JHTDB (Graham et al., 2016) as the input or
the surrogate for experimental PIV measurements. Here, uτ

is the friction velocity, h is the channel half-height, and ν is
kinematic viscosity. For consistency with typical PIV systems,
we use only 2D-2C velocity data that is sampled uniformly in
time and space. We consider reconstruction from measure-
ments made in a single streamwise-wall normal (x− y) plane
as well as measurements made simultaneously in the x−y and
y− z planes, where z is the spanwise direction. We evaluate
how increasing the number of snapshots affects reconstruction
performance. In addition, we compare reconstructions for two
different resolvent models: one which makes use of the molec-
ular viscosity (ν) and another that includes the eddy viscosity
(νT ) in the input-output transfer function Morra et al. (2019).

This work complements prior literature on resolvent-
based reconstruction. Prior studies have successfully recon-
structed the velocity field from time-resolved point measure-
ments in band-limited flows such as inclined square cylinder
wakes (Gómez et al., 2016) and jets (Beneddine et al., 2017)
by projecting the velocity field on to resolvent modes. Recent
studies reconstruct the full 3D velocity field for turbulent chan-
nel flow from spatiotemporally-resolved velocity field snap-
shots at a single wall-normal location (Illingworth et al., 2018)
or from wall-based measurements of shear stress and pressure
(Amaral et al., 2021). The key distinction in the present work
is the use of limited measurements that are not spatially or tem-
porally resolved to reconstruct a broadband turbulent flow.

METHODS
Resolvent-based reconstruction

In the resolvent framework, the Navier-Stokes equations
are reformulated into a linear forcing-response system that in-
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terprets the nonlinear term as a forcing and the velocity and
pressure fields as the response (McKeon, 2017). For turbu-
lent channel flows that are homogeneous in the streamwise (x)
and spanwise (z) directions and statistically stationary in time
(t), the governing equations can be Fourier transformed and
the forcing-response system can be formulated independently
for each wave-number frequency triplet k = {kx,kz,ω}. The
transfer function between the input forcing and output state
variables for each k is the resolvent operator Hk. A gain-
based decomposition of the resolvent operator then identifies
high gain forcing and response modes. The response modes
are travelling wave structures, which serve as the candidate
basis functions onto which we project the velocity field. An
eddy viscosity model is included in resolvent operator to in-
corporate the effect of Reynolds stresses (Morra et al., 2019).
Resolvent modes are then computed for a channel geome-
try for the following streamwise and spanwise wavelength
(λx, λz) and mode speed (c+) ranges: 0.125 < |λx|/h < 16,
0.125 < λz/h < 16, and 0 < c+p ≤ 22.63. A database of 53040
resolvent modes is compiled. To limit database size only rank
1 modes are used.

We assume that the total velocity field can be represented
as a linear combination of the resolvent modes:

û(x,y,z, t) = ℜ

∑
k

αk ũk(y)exp(i(kxx+ kzz−ωt))︸ ︷︷ ︸
pk

 . (1)

Here, ũk(y) is the resolvent mode computed for wavenumber-
frequency combination k = (κx,κz,ω). The complex coef-
ficients αk determine the amplitude and phase of the mode.
Note that each term in the summation comprises two basis
functions and two coefficients corresponding to the real and
imaginary components of ũk and αk, respectively. Thus, M/2
resolvent modes yield M basis functions and M coefficients.

The reconstruction problem essentially amounts to tuning
the coefficients αk using measurement data. For this, the 3D
flow fields for each resolvent mode, pk, are evaluated with the
same spatial and temporal dimensions at the input data to form
candidate basis functions dm in a large database D. For in-
stance, for reconstruction from 2D-2C data in the x− y plane,
the streamwise and wall normal components of velocity (u,v)
are extracted with the same spatial and temporal resolution as
the PIV-like input data. The PIV-like input velocity data are
now projected on to these basis functions:


u1
u2
...

uN


︸ ︷︷ ︸

input data

≈

 d1 d2 · · · dM


︸ ︷︷ ︸

basis f unctions


b1
b2
...

bM


︸ ︷︷ ︸

coe f f icients

, (2)

or equivalently, u ≈ Db. Here, u represents the sequence of N
input velocity field snapshots reshaped into a column vector, D
represents the database of M basis functions (or M/2 different
resolvent modes) and b is a column vector of coefficients for
the basis functions.

Identifying dominant resolvent modes
Standard least squares method cannot be used for the re-

gression problem in Eq. 2 due to the limited measurement data

available and the large number of candidate resolvent modes in
the database, i.e., the likelihood of over-fitting. Thus, we seek
a sparse solution in which only a small number of coefficients
are non-zero. For this we use the FROLS algorithm (Billings,
2013), which sequentially identifies the resolvent modes that
best represent the input training data and calibrates their am-
plitude and phase. Here, we use a slightly modified version
which selects a full resolvent mode instead of the real or imag-
inary component of it. This allows us to reconstruct flow fields
with arbitrary phase shifts between the modes. This imple-
mentation is similar to the one used in Chinta et al. (2022). For
all the cases considered in this paper, reconstruction is carried
out with the first 200 resolvent modes (or 400 basis functions)
identified by the FROLS algorithm.

Enforcing statistical constraints
Although the reconstructed flow field (û = Db) is ex-

pected to represent the input data with reasonable accuracy,
there is no guarantee that the resulting flow field will be statis-
tically sound. Thus, we solve an additional optimization prob-
lem to enforce statistical consistency. Specifically, we mini-
mize the following composite cost function:

C = λC1 +(1−λ )C2 (3)

where λ is a hyper-parameter to adjust the fit towards the ve-
locity field or the statistics, and

C1 = ∥u− û∥2
F/∥u∥2

F , C2 = ∥u2 − û2∥2/∥u2∥2, (4)

represent cost functions for the velocity field and second-order
statistics. Note that the velocity components and statistical
quantities used for training can be different depending on the
data available. As an example, for reconstruction from 2D-2C
velocity snapshots in the x− y plane, we have u = (u,v) and
u2 = (u2,v2,uv). For this case, second-order statistics for the
identified and calibrated resolvent modes are given by

û2 =

û2

v̂2

ûv

= ∑
k

|αk|2

2
ℜ

ũ∗kũk
ṽ∗kṽk
ũ∗kṽk

 (5)

where ũk and ṽk respectively represent the streamwise and
wall-normal components of ũk, and a superscript ∗ denotes the
complex conjugate. Note that second-order statistics for turbu-
lent channel flow, u2, can be computed directly from the mea-
surements or obtained from other sources (including models).
We use the multistart optimization routine in MATLAB to find
the solution, i.e., the set of coefficients α = {αk}) that mini-
mize the composite cost function in Eq. 3: α = argmin

α ′
C (α ′).

Numerical Evaluation
The full DNS dataset acquired from JHTDB composes

256 snapshots obtained at intervals of δ t+ = 0.0625, for both
the x− y and y− z planes. Following standard notation, the
superscript + denotes normalization with respect to uτ and ν .
Thus, the total time interval between the first and last snap-
shots is T+ = 256× δ t+ ≈ 16. For the x− y plane, we use
a uniformly sampled grid with Nx ×Ny = 32× 64 extending
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over a region of size 2h× h. For the y− z plane, we use a
Ny ×Nz = 64×32 grid extending over a region of size h×2h.
Only the first and last DNS snapshots are used to reconstruct
the flow field. The intervening snapshots are used to quan-
tify reconstruction accuracy using separate error metrics for
the observed (trained) variables and the unobserved (watched)
variables. For reconstruction from 2D-2C data in the x − y
plane, the trained components are the velocity fields (u,v) and
the statistical quantities (u2,v2,uv). The watched variables are
the spanwise velocity component and pressure (w, p), and the
statistical quantities (w2, p2,wp). Integrated error metrics for
the trained and watched quantities are defined as

εu(train) =
1
2

(
∥u− û∥F

∥u∥F
+

∥v− v̂∥F

∥v∥F

)
,

εu(watch) =
1
2

(
∥w− ŵ∥F

∥w∥F
+

∥p− p̂∥F

∥p∥F

)
,

(6)

and

εu2(train) =
1
3

∥u2 − û2∥2

∥u2∥2
+

∥v2 − v̂2∥2

∥v2∥2
+

∥uv− ûv∥2

∥uv∥2

 ,

εu2(watch) =
1
3

∥w2 − ŵ2∥2

∥w2∥2
+

∥p2 − p̂2∥2

∥p2∥2
+

∥up− ûp∥2

∥up∥2

 .

(7)

Here the variables shown with a (̂) are the reconstructed veloc-
ity or statistical components, while the unhatted variables are
the DNS ground ‘truth’. Similarly, for reconstructions from
data in both the x− y and y− z planes, the trained variables
are the streamwise and wall-normal velocity components (u,v)
for the x− y plane, and the wall-normal and spanwise velocity
components (v,w) for the y− z plane. Statistical constraints
are imposed on the quantities (u2, v2, w2, uv). The watched
components are (w, p) in the x− y plane and (u, p) in the y− z
plane. The watched statistical quantities are (p2,up). In this
case, the error metrics in Eqs. 6-7 are modified to reflect the
different trained and watched quantities.

Table 1. Cases discussed in this study. In the second column,
ν represents resolvent analysis with the molecular viscosity
while νT is for an eddy viscosity model. N is the number of
snapshots used for training. The fourth column indicates the
planes and velocity data available for training. λ is the hyper-
parameter used in constrained optimization, see Eq. 3

Case Visc. Model N Planes λ

1 ν 2 x-y (u,v) 0.5

2 ν 2 x-y (u,v), y-z (v,w) 0.5

3 νT 2 x-y (u,v), y-z (v,w) 0.5

4 ν 2 x-y (u,v), y-z (v,w) 0.9

5 ν 8 x-y (u,v), y-z (v,w) 0.5

Cases
This paper evaluates reconstruction for the 5 different data

scenarios listed in Table 1. These cases systematically evalu-
ate reconstruction accuracy for different measurement planes,
viscosity models, training snapshot numbers, as well as the
hyper-parameter (λ ) that sets the relative weighting for the ve-
locity field and statistics in the cost function used for the opti-
mization algorithm (Eq. 3).

Case 1 represents the baseline case in which reconstruc-
tion is carried out using the molecular viscosity (ν) resolvent
modes from N = 2 snapshots obtained in the x− y plane with
a time interval of T+ ≈ 16. Case 2 builds on Case 1 to con-
sider reconstruction from simultaneous measurements in both
the x−y and y−z planes. Case 3 makes use of the eddy viscos-
ity (νT ) resolvent model for reconstruction. Case 4 considers
a higher value for the hyper-parameter (λ = 0.9 vs. λ = 0.5
for the remaining cases). This emphasizes reconstruction of
the velocity field. Finally, Case 5 evaluates reconstruction ac-
curacy from N = 8 snapshots of the velocity field.

Reconstruction accuracy is evaluated for both the re-
costructions from FROLS (which does not take into account
statistical constraints) and from constrained optimization sep-
arately. Since the watched variables and statistics are not
used for either the FROLS or optimization, the reconstruc-
tion error for these quantities provides a sense for whether
the resolvent-based reconstruction framework being developed
here is able to generate volumetric reconstructions from lim-
ited planar data.

RESULTS AND DISCUSSION

Table 2. Reconstruction errors in the velocity field and statis-
tical quantities for the trained and watched variables. For each
case, the top row shows reconstruction error after the FROLS
algorithm is used to identify and calibrate 200 resolvent mode
amplitudes based on the training snapshots. The bottom row
(in parentheses) shows reconstruction error after the optimiza-
tion algorithm modifies the amplitudes to enforce statistical
constraints.

Case εu(train) εu(watch) εu2(train) εu2(watch)

1 0.36 760.71 2.82×104 1.23×104

(0.46) (2.07) (0.15) (1.14)

2 0.51 1.15 12.50 224.16

(0.60) (1.25) (0.30) (1.54)

3 0.56 2.16 6.78×109 2.51×1010

(0.86) (0.94) (0.18) (0.81)

4 0.51 1.15 12.50 224.16

(0.54) (1.14) (0.49) (1.78)

5 0.66 1.00 12.50 224.16

(0.75) (1.01) (0.31) (1.79)

Table 2 shows reconstruction errors in the trained and
watched variables for the training snapshots, along with the
errors for the trained and watched statistical quantities. For
each case, the top row shows the error from FROLS. The sec-
ond row (in parenthesis) shows the error after constrained opti-
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Figure 1. Error evolution for trained variables in the x− y plane (a) and y− z plane (b). Solid lines represent reconstructions from
FROLS and dashed lines from constrained optimization.

mization. Starting with the baseline case, where a single x− y
plane is used, the errors for the training snapshots from FROLS
are reasonably low (εu(train) < 0.4) and the flow fields, not
shown here for brevity, are qualitatively similar to the DNS
truth. However, the errors for the statistical quantities are sev-
eral orders of magnitude higher, ∼ O(104). After optimization
the error in the statistics decreases to O(10−1) with a slight
increase from 0.36 to 0.46 in the error for the trained compo-
nents of the velocity field. It is interesting to note that the error
for the watched variables (w, p) decreases substantially, from
760 to 2.

Building on this case, we next use simultaneous measure-
ments from both x−y and y−z planes. The error evolution for
the reconstructions in the x− y and y− z plane are shown in
Fig. 1(a) and (b), respectively. Reconstruction error for Case 2
in x− y plane varies little over the time horizon, with a mean
value (εu(train) ≈ 0.5) which is very close to the values re-
ported for the training snapshots in Table 2. After optimiza-
tion, the errors for both the trained and watched variables in-
creases slightly, while the errors for the statistical quantities
again decrease substantially. For instance, εu2(train) decreases
from 12.5 to 0.30. It is important to note that the use of two
orthogonal planes results in a significant decrease in the error
for watched quantities even before optimization. The error for
the watched components of velocity field changes from 760
for Case 1 to 1.15 for Case 2. Similarly, reconstruction error
for the statistical quantities decreases by over two orders of
magnitude for Case 2 relative to Case 1.

When the νT resolvent model is used (Case 3), recon-
struction errors for the velocity field from FROLS are compa-
rable to those for the ν resolvent model (Case 2). However, er-
rors for the statistical quantities (∼ O(1010)) are several orders
of magnitude larger than that for Case 2 (∼ O(104)). After op-
timization, the errors for the statistical quantities are reduced to
∼ O(10−1). However, the error for the velocity field rises sig-
nificantly when compared to Case 2. Figure 2 compares recon-
structed statistics from FROLS for Case 2 and the constrained
optimization results for Cases 2 and 3 with the DNS ‘truth’.
As discussed before, the statistics from FROLS are several or-
ders of magnitude higher, while the reconstructed statistics af-
ter optimization qualitatively match the DNS profiles. Note
that the statistics corresponding to Case 3 are smoother and
more closely approximate the DNS profiles compared to Case
2. This is consistent with the observations of Morra et al.
(2019), who showed that the νT resolvent model yields bet-

ter reduced representations for turbulence statistics. This is
because the resolvent modes computed with an eddy viscosity
model have greater support in the wall-normal direction. This
results in smoother statistics. However, this also smooths out
fine-scale features in the reconstructions which result in larger
errors for the velocity fields.

Figure 3 compares the reconstructed flow fields after op-
timization for Case 2 with the corresponding snapshots from
DNS. Subplots (a)-(b) show the trained velocity components
in the x − y plane (u,v) for one of the 2 training snapshots.
Subplots (c)-(d) show the watched variables in the x−y plane,
i.e., spanwise velocity and pressure. Subplots (e)-(f) show the
velocity fields reconstructed for a x− y plane that is offset by
∆z/h = 0.125 in the spanwise direction from the training snap-
shots. In other words, panels (c)-(f) show reconstructions for
quantities that are not available for training the model. The re-
constructions are labelled with a (̂). As expected, reconstruc-
tions for the training components (u,v) show good qualitative
agreement with the DNS snapshots, though some fine-scale
features are missing (see Fig. 3(a,b)). We do not see significant
similarity in structure for the untrained components, i.e., (w, p)
in Fig. 3(c,d). However, the magnitudes are captured. Recon-
structions in the spanwise offset plane (Fig. 3(e,f)) again do
not match the DNS data but the magnitudes are within range.

A comparison of Cases 1 and 2 shows that reconstruction
error for the trained velocity components increases when us-
ing data from two orthogonal planes. However, errors for the
watched variables and statistical quantities are reduced signifi-
cantly in comparison to those obtained using data from a single
plane. This suggests that using simultaneous measurements in
the x− y and y− z planes may help in estimating unobserved
(untrained) variables and potentially reconstructing volumetric
flow fields from limited planar data.

Next, we consider the influence of the hyper-parameter
(λ ) used in Eq. 3 on errors for the velocity field and statistical
quantities. Table 2 shows that, when compared to Case 2 (λ =
0.5), reconstruction errors for the velocity field for Case 4 (λ =
0.9) are slightly better after optimization. However, errors for
the statistical quantities are slightly worse. A similar trend
can be seen for both the trained and watched variables. This
is expected from Eq. 3. A higher value for λ places greater
emphasis on the loss from the flow field, which improves the
velocity reconstructions but compromises the statistics.

Finally, Case 5 considers the effect of using more training
snapshots. We still use 2 snapshots for training the FROLS re-
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Figure 2. Reconstructed statistics from FROLS for Case 2 and constrained optimization for Cases 2 and 3. The blue scale on the left
corresponds to the FROLS reconstructions with the orange scale on the right corresponds to the optimization results and DNS profiles.
Note the substantial difference in magnitude from the FROLS profiles to the optimization and DNS profiles. The statistics from eddy
viscosity model are smoother and more closely approximate the DNS profiles.

Figure 3. Reconstructed velocity and pressure fields after optimization for Case 2 are compared with DNS data. Subplots (a)-(b)
show reconstructions for the observed (trained) components of velocity in the x− y plane. Subplots (c)-(d) show reconstruction for the
unobserved (watched) velocity and pressure fields. Subplots (e)-(f) show reconstructions at a different x− y plane (∆z/h = 0.125) for
the trained components (u,v)
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constructions. However, after the set of 200 resolvent modes
is identified, the data sequence is augmented with 6 addi-
tional snapshots obtained at the same spatio-temporal resolu-
tion. The coefficients are then optimized to minimize the loss
from these 8 snapshots and the statistics. Figure 1 shows that
the error after optimization is significantly increased for the
x − y plane when reconstruction is carried out from 8 snap-
shots. For the orthogonal (y− z) plane, reconstruction error
only increases slightly (see the change in dotted vs. dashed
lines). Note that the error shown in Table 2 for Case 5 con-
siders all 8 snapshots in the data sequence. However, the time
series in Fig. 1 only shows the reconstruction between the first
2 snapshots.

In general, errors for reconstructions from the x− y plane
are lower in comparison to errors for the y − z plane. This
is due to the fact that turbulent channel flow is advection-
dominated. Since the flow advects in the x−direction, having
training snapshots in the x−y plane helps identify appropriate
traveling wave resolvent modes. When interpolated in time us-
ing Eq. 1, these resolvent modes propagate downstream with
the phase speed c = ω/kx. While the snapshots in the y− z
plane provide some insight into spanwise structure, they may
not contain the information necessary to characterize oblique
wave motion. This indicates that measurements made in the
horizontal x− z plane may yield improved out-of-plane recon-
structions. Note that reconstruction errors generally increase
with increasing input data (see Cases 1, 2, and 5). This may be
attributed to the fact that all reconstructions are carried out us-
ing just 200 resolvent modes. A larger set of resolvent modes
may be necessary to accurately represent the input data from
multiple planes and snapshots.

CONCLUSIONS
The results presented in this paper show that projection

onto resolvent modes can yield useful reconstructions for wall-
bounded turbulent flows when very limited measurements are
available. The FROLS algorithm efficiently identifies resol-
vent modes that best represent the data from a large database.
However, additional constraints are needed to ensure that the
reconstructions are statistically sound. Errors from FROLS
reconstructions are quite high for unobserved (watched) vari-
ables and statistical quantities when 2D-2C data from a single
x− y plane are used as input data. After optimization to mini-
mize a composite loss function that accounts for the input data
as well as second-order statistics, these errors decrease signif-
icantly. The use of simultaneous measurements in x− y and
y− z planes also reduces this error. The use of an eddy viscos-
ity resolvent model leads to an increase in reconstruction error
for the input velocity snapshots but greatly improves the statis-
tics. In general, reconstruction error for unobserved quanti-
ties (e.g., out of plane velocity, pressure) reduces as statisti-
cal constraints are introduced or simultaneous measurements
from multiple orthogonal planes are used. Future work will
consider reconstruction from input data consistent with stereo-
scopic and tomographic PIV (i.e., 2D-3C and 3D-3C) as well
as wall-based measurements.
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