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ABSTRACT
Periodic and quasi-periodic fluid motion is observed in

engineering and flow applications, which involve a range of
time and length scales. These coherent and regularly recur-
ring structures profoundly affect momentum transport and tur-
bulence energy budget. Hence, understanding the underlying
mechanisms and flow dynamics associated with these struc-
tures are important for characterizing the shear flow phenom-
ena. In particular, characterizing these periodic processes is
important for guiding the design and control of fluid systems.
Here, a new mathematical technique is proposed to assess and
quantify the interactions of periodically occurring structures in
an unsteady turbulent flow, hereon referred to as the “Fourier-
averaged Navier-Stokes” or FANS. In this method, Fourier de-
composition in time domain is applied to the Navier-Stokes
equations and particular attention is given to the resulting non-
linear momentum flux terms. Examining the contributions of
each decomposed momentum component provided physical
insights into the interactions between structures across mul-
tiple time-scales. A general overview of the technique is pro-
vided with a summary derivation of the method. Illustrative
case studies highlight the application and benefits of FANS to
periodic flows.

INTRODUCTION
Several techniques have been developed with the aim to

deepen our understanding of unsteady turbulent wakes exhibit-
ing strong temporal periodicity. These flows are important to
study due to their prevalence and complicated physics. Meth-
ods such as reduced-order models (ROM) or stability analy-
sis have been widely and successfully used to investigate such
flows. The conventional phase-averaging procedure (Eriksen
& Krogstad, 2017) is limited to a single dominant frequency,
and thus it is not suitable, by construction, to analyze com-
plex interactions of different modes of motion. The many
variants of Proper Orthogonal Decomposition (POD) and Dy-
namic Mode Decomposition (DMD) aim to find optimal re-
constructions of the flow kinematics. Thus, they are useful in
examining the flow in a model-free context (Chen et al., 2012;
Noack et al., 2016). However, POD can fail to produce co-
herent results for flows with multiple important frequencies.
These methods also do not provide a simple approach to com-
pare important interactions between modes. Meanwhile, lin-
ear stability analysis tackles the onset and continuation of per-
turbations through a linearized analysis of the Navier-Stokes
equations, which prevents it from describing nonlinear pro-
cesses (Beneddine, 2017). Hence, none of these analyses
are capable of providing a description of the forces arising

from different flow structures over multiple timescales, par-
ticularly regarding interaction between these structures. Sev-
eral flow assessment techniques have been introduced over the
past decade, which connect mathematical observations with
physical processes in such flows. Two notable methods are the
Spectral Proper Orthogonal Decomposition (SPOD) and Bis-
pectral Mode Decomposition (BMD). SPOD was coined by
Picard & Delville (2000) to refer to a specific method of Lum-
ley (Lumley, 1970). This method involves the determination
of modes that vary in both space and time, granting it greater
flexibility than classic POD (Towne et al., 2018). Recently
Towne et al. (2018) formally established a connection between
SPOD and resolvent analysis, in that the two will be identical
for white-noise (i.e. uncorrelated in space and time) forcing of
the linearized Navier-Stokes equations used in resolvent anal-
ysis. This establishes a strong connection between the findings
of SPOD and the linearized equations, which in turns suggests
that SPOD modes have physical correspondence to important
flow mechanisms. However, the connection relies on a white-
noise assumption and the use of linearized equations in resol-
vent analysis, which clouds the overall scope of application
when investigating interactions between these structures using
SPOD.

The BMD suggested by Schmidt (2020) uses statistical
methods to find optimal representations of Fourier modes. In
this case, ‘optimal’ modes (q̂( f )) from a quantity of interest
(q(t)) are those that maximize triadic interactions in the flow,
as defined through

b( f1, f2) =
∫

V
q̂( f1)q̂( f2)q̂( f1 + f2)dV.

Here, BMD attempts to find correlations between the “input”
of a triadic interaction, that is q( f1)q( f2), and the resulting
“output”, q( f1 + f2). As a result, BMD may be effective at
finding modes and regions of the flow that are highly involved
in nonlinear interactions, but ignores the specific transfers of
momentum that are involved in these processes.

To address this gap in analyzing nonlinear interactions
using existing methods, a new formulation based on Fourier
analysis of the momentum fluxes in a flow is proposed– the
Fourier-Averaged Navier-Stokes, or FANS equations. Apply-
ing a Fourier decomposition in time to the momentum equa-
tions themselves, and not just the flow field, unveils properties
of the momentum fluxes at different timescales. Thus, critical
information about the flow dynamics can be obtained. This
leads to valuable insights into the periodic features of the un-
steady flow. Unlike other frequency-domain methods, FANS
specifically attempts to provide a rigorous link between the

1



12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan (Online), July 19-22, 2022

flow physics and the governing equations. This methodology
has several similarities to the spatially-spectral methods that
have enjoyed great success in turbulence and instability anal-
ysis (e.g. Barkley & Henderson (1996), chapter 10 of Durbin
& Pettersson (2011)), however here the specific focus is on a
temporal decomposition. The primary hypothesis for FANS is
that many unsteady wakes contain at least one dominant fre-
quency. Examples of such flows are the wakes characterized
by Khalid et al. (2020), Bai & Alam (2018), and Beneddine
(2017). The FANS formulations are likewise capable of han-
dling flows with multiple dominant frequencies, where com-
plicated dynamics may result due to interaction between struc-
tures. By virtue of their periodic characteristics, the dynamics
of these structures and their resulting effect on the momen-
tum balance of the entire flow would be naturally described by
looking at the momentum budget at that frequency.

To introduce FANS and its application, a brief derivation
and two case studies are considered. First, FANS formulations
are introduced, along with methods to carry out calculations of
the key quantities. Then, two case studies on simple periodic
flows are considered. By analysing the wake behind a square
cylinder and an oscillating foil, connections between FANS-
calculated quantities and physical phenomena are established.
These highlight how FANS can elucidate mechanisms behind
complicated flow physics in certain flow regimes.

FORMULATION
In order to arrive at an expression representing the balance

of momentum at each timescale, a periodic flow field (consist-
ing of velocity u, and pressure p) with period T = 2π/ω is
assumed. This allows us to write the flow field as a Fourier
series in time:

u =
∞

∑
m=−∞

ûme jωmt , p =
∞

∑
m=−∞

p̂me jωmt , (1)

where û, p̂ are the Fourier coefficients corresponding to veloc-
ity and pressure, respectively. Assuming incompressible New-
tonian flow, the flow field obeys the Navier-Stokes equations,

∂tu+u ·∇u =−∇p+ν∇
2u. (2)

In order to isolate the momentum balance at a particular
timescale, Eq. 2 is subjected to a Fourier decomposition by
applying an inner product with a test function e− jωkt , exploit-
ing the orthogonality property:

∫ T

0
e− jωkte jωmtdt =

{
0 k ̸= m
T k = m

(3)

The process is applied term by term. For the pressure and
diffusion fluxes, this process yields:∫ T

0
e− jωkt

(
−∇p+ν∇

2u
)

dt

=
∫ T

0
e− jωkt

(
−∇∑ p̂me jωmt +ν∇

2
∑ ûme jωmt

)
dt

=
∫ T

0

(
−∇∑ p̂me jω(m−k)t +ν∇

2
∑ ûme jω(m−k)t

)
dt

=
∫ T

0
∑(−∇ p̂m +ν∇

2ûm)e jω(m−k)tdt

Note that all summations are indexed by m ∈ (−∞,∞), omitted
here for cleanliness. Of the terms in the summation, only the
kth term survives the integration due to orthogonality. Thus:

∫ T

0
e− jωkt

(
−∇p+ν∇

2u
)

dt =−∇p̂k +ν∇
2ûk (4)

The process is similar for the acceleration term:

∫ T

0
e− jωkt

∂t ∑ ûme jωmtdt =
∫ T

0
∑ jωmûme jω(m−k)tdt = jωkûk

(5)
The convective term is somewhat more complicated due to its
nonlinear dependence on u.

∫ T

0
e− jωktu ·∇udt =

∫ T

0
e− jωkt

∑
m

ûme jωmt ·∇∑
n

ûne jωntdt

=
∫ T

0
∑
m,n

ûm ·∇ûne− jω(n+m−k)tdt

Terms in the double summation survive only when m = k−n,
reducing it to a single summation,

∫ T

0
e− jωktu ·∇udt = ∑

n
ûk−n ·∇ûn

= U ·∇ûk + ûk ·∇U+ ∑
n̸=0,k

ûk−n ·∇ûn, (6)

where terms corresponding to n = 0 and k are extracted to
highlight the extreme importance of the mean flow U, and to
bring the FANS notation in line with other methods, such as
Reynolds-Averaged-Navier-Stokes (RANS) and linear stabil-
ity analysis. Collecting these terms together returns a momen-
tum balance corresponding to a mode ûm in terms of itself and
the other Fourier modes:

j2πk f ûk︸ ︷︷ ︸
T̂k

+U ·∇ûk + ûk ·∇U︸ ︷︷ ︸
Ĉk

=

−∇ p̂k︸ ︷︷ ︸
P̂k

+ν∇
2ûk︸ ︷︷ ︸

D̂k

− ∑
n ̸=0,k

ûn ·∇ûk−n

︸ ︷︷ ︸
χ̂k

(7)

Here, terms corresponding to convection (Cm, χm) and pres-
sure (Pm) are the most important to analyze, as they are rep-
resentative of the triadic interactions that are highly important
in turbulent flows, e.g., Schmidt (2020). However, this deriva-
tion is valid for a continuous, periodic flow field. Since almost
all fluid dynamics research is built on analyzing snapshots of
discrete data, either through simulations or experiment, it is
important to translate these results into a discrete domain. Sup-
posing that there is a collection of N evenly-spaced snapshots
{un} of discrete flow field data, the discrete Fourier transform
of this data would be given by

ûk =
N−1

∑
m=0

ume− j2πkm/N (8)

Since vectors of dynamics am = e− j2πkm/N are orthogonal un-
der the inner product of am ·an = δmn, this process may be re-
peated for the discrete analog of the Navier-Stokes equations:
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∆un

∆t
+C[un,un] =−G[pn]+νL[un] (9)

using discrete convection (C), gradient (G) and Laplacian (L)
operators, as calculated through whichever method is most ap-
propriate to the data (finite differences, volumes, elements,
etc.). Fortuitously, orthogonality of the vectors am may be used
to find the Fourier modes. This results in a discrete formula-
tion that is similar to the continuous FANS equations:

j2πk
N

ûk +C[U, ûk]+C[ûk,U] =

−G[p̂k]+νL[ûk]− ∑
n̸=0,k

C[ûk−n, ûn] (10)

FANS formulations are attractive for analyzing unsteady (es-
pecially periodic) flows for multiple reasons. For instance,
since the regular Navier-Stokes equations may be recon-
structed from the decomposed equations (Eq. 7) through a
Fourier series, it can be said that all physical interactions rep-
resented in the flow are contained in the FANS equations. An-
other attractive aspect is ease of implementation. FANS-based
analysis depends on a discrete Fourier transform of snapshots
(usually an FFT) and discrete derivative calculations, both of
which are widely available in software packages commonly
used for fluid dynamics research. The following sections will
provide an example of this analysis on familiar periodic flows
to highlight the application of the method.

Existing methods in literature
The above formulation (FANS) bears similarities to exist-

ing methods based on a temporal Fourier decomposition that
have been discussed in literature. For example, similar formu-
lations have been used as a simulation tool in the past, namely
the Spectral Time Discretization (STD) by Carte et al. (1995),
harmonic balance (HB) technique by Hall et al. (2002), and
Self-Consistent method (SCM) by Mantič-Lugo et al. (2015).
The HB and STD are specifically high-accuracy, fast simu-
lation methods for periodic flows, however notably the HB
is used for compressible flows with externally forced peri-
odicity, primarily turbomachinery. Meanwhile, SCM can be
viewed as an extension of linear stability analysis used to cal-
culate saturation dynamics and sensitivity maps, albeit at sig-
nificant effort. In this way, the FANS formulations may not
constitute a new mathematical approach, however, their ap-
plication as a tool to obtain physics-based insights using ex-
isting data is novel. The previous applications strictly focus
on solving for an unknown flow field, whereas the current
work contends that the resulting formulations are also useful
in post-processing flow field data. A key advantage of using
the formulations for postprocessing opens up insights from a
larger variety of flows and data acquisition methods. In par-
ticular, simulating flows with a large number of harmonics
or broadband spectrum may be difficult or infeasible with a
time-spectral method. However, investigating physics involv-
ing periodically-occuring structures may still be worthwhile.
Using the formulations for postprocessing allows these inves-
tigations to occur.

CASE STUDIES
The main case studies completed include a two-

dimensional direct numerical simulation (DNS) of an oscillat-
ing foil with combined pitching and heaving motion at Re =
1000 and periodic vortex shedding behind a square cylinder
at Re = 100. OpenFOAM is used as the main computational
platform, although different methods are used for solving the
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Figure 1. Contours of vorticity trailing a square cylinder.
Vortices are produced and shed immediately behind the cylin-
der, after which time they depart from the centreline at a con-
stant speed.

flow. Second order accurate spatial and temporal discretiza-
tion methods are used for solving the convective, diffusive and
advective terms. The Pressure-Implicit with Splitting of Oper-
ators (PISO) method is used for coupling velocity and pressure
fields. Specific details of each simulation are detailed sepa-
rately in the coming sections.

Square Cylinder: cylinders at low Re are common case stud-
ies for investigating periodic flows due to their regularity and
simplicity, e.g., Schmidt (2020). For this investigation, a
square cylinder oriented normal to the streamwise direction at
Re = 100 was selected since the resulting flow exhibits purely
periodic vortex shedding in a street extending from behind the
cylinder, and it is below the threshold for 2D-3D transitions.
The incompressible, laminar solver icoFOAM is selected for
the simulation. A simple structured mesh with local refinement
around the cylinder is used, following the mesh description in
Bai & Alam (2018).
Oscillating Foil: the second case study is a teardrop foil un-
dergoing combined sinusoidal pitching and heaving motion.
The reduced frequency of the motion ( f ∗ = f c/U∞) is 0.4,
while the pitching amplitude is 8◦ and heaving amplitude is
h/c= 0.25. At Re= 1000, this flow is characterized by regular
shedding of both leading and trailing edge vortices due to the
combined motion. An Overset Grid Assembly in OpenFOAM
was used for the simulations. More computational details are
described in Verma et al. (2022). Five cycles are considered
for data analyses after reaching statistical convergence.

ANALYSIS
Square Cylinder: Results of the FANS decomposition of the
wake behind a square cylinder are shown in Figures 2 - 4.
Fourier decomposition shows the presence of two strong fre-
quencies, corresponding to the primary vortex shedding fre-
quency (Mode 1) and its harmonic (Mode 2). Figure 2a shows
the spatial distribution of Mode 1, from which the vortex street
can be clearly identified as it splits and moves downstream.
Figure 2b shows the corresponding harmonic structure that is
strongest in the near-wake, where there are interactions be-
tween two vortex streets. Using the momentum budgets in the
wake region, it is shown that the main frequency represents a
self-sustaining structure, while the harmonic arises naturally
due to the convection induced by the velocity fluctuations.

Effect of the nonlinear forcing term (χ1
u ) is not critical

in the flow as suggested by the results in Figure 4a, where
the wake is largely dominated by the pressure, convective, and
temporal terms. Since χ1

u is the only connection to other fluc-
tuating modes, and the other terms are linear in û1, this in-
dicates that the primary frequency exists as a self-sustaining
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Figure 2. Contours of real parts of ûm for streamwise velocity, u, for (a) Mode 1 and (b) Mode 2. Imaginary parts are of similar
magnitude, shifted in space by half a vortex length.
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Figure 3. Pressure flux P1
v corresponding to mode v̂1, show-

ing strong pressure fluctuations in the region of vortex produc-
tion.

process. This observation about the vortex street is in agree-
ment with the observations of linear stability analysis reported
for example by Noack et al. (2003). The pressure flux contour
for v̂1, suggests the origin of the split wake. This separation
of vortices away from the centreline can be attributed to strong
pressure fluctuations in the near-wake, as shown in Figure 3.

Pressure fluctuations are generated by the combined effect
of distortions of the mean flow and primary velocity fluctua-
tions in the vortex formation region. Meanwhile, the effect of
these pressure fluctuations on the streamwise velocity is high-
lighted by Figure 4a. Note that the streamwise fluid accelera-
tion (T 1

u ) and pressure gradient terms (P1
u ) at the fundamental

frequency are in phase as the vortices convect downstream,
driven by the mean flow convection (C1

u ). This indicates that
the fluctuations of the pressure deficit region serve to dampen
the streamwise fluctuations, which slows and distorts vortices.
This corresponds to the intuitive idea that pressure deficit be-
hind the square cylinder entrains freestream fluid into the wake
region, slowing structures that depart in the streamwise direc-
tion, reducing the convection rate of the shed vortices. Here,
FANS intuitively represents this physical flow process.

FANS analyses highlight the origins of the harmonic as
well. Figure 4b shows the importance of the forcing term χ2

u
in perpetuating the harmonic. The magnitude of this momen-
tum flux is comparable to the mean-flow convective (C2

u ), pres-
sure (P2

u ), and temporal (T 2
u ) terms, indicating that the ‘forc-

ing’ generated by χ2
u continues to create a harmonic even after

the wake has split and vortices are no longer interacting. Based
on an order-of-magnitude analysis, χ2

u is generated entirely by
the mechanism associated with the primary frequency, since it

is the only other significant mode along with the mean flow:

χ
2
u = ∑

n ̸=0,2
ûn

k∂kû2−n ≈ û1
k∂kû1 (11)

This indicates how FANS analyses highlight the origin of tri-
adic interactions of the fundamental frequency, which leads
to the generation of harmonics. This finding corroborates
those of other analyses on cylinder wakes, e.g., BMD and self-
consistent method (Schmidt, 2020; Mantič-Lugo et al., 2015).
These conclusions come directly out of the analysis with little
computational effort.

Oscillating Foil: In order to deepen the discussion of FANS
and its representation of unsteady wakes, a periodically pitch-
ing and heaving foil is analyzed. This oscillatory wake is char-
acterized by pairs of vortices shed during each oscillation cy-
cle from the leading and trailing edges on both top and bottom
of the foil, as depicted in Figure 5. The contours of vortic-
ity show strong shearing of the flow between the leading and
trailing edge vortices as they develop. These connections link
these structures strongly in this region. To isolate the fluid mo-
tion around the foil for FANS analyses, a reference frame fixed
on the foil is considered. Note that the original formulations
(Eqs. 7, 10) will then contain added terms due to the Corio-
lis and centripetal forces. The contribution of these terms at a
harmonic k is denoted as τk.

The first mode of the streamwise velocity, corresponding
to the foil oscillation frequency, is shown in Figure 6. Effect
of the alternated shedding of leading and trailing edge vortices
from the foil edges can be seen in their respective locations.
Note the meandering of the wake due to the change in refer-
ence frame.

The momentum flux terms (P̂1, Ĉ1) dominate the momen-
tum transport phenomenon at the foil oscillatory frequency in
Figures 7 and 8. This is due to flow stagnation in the nar-
row nose region at the leading edge, the location of which
moves during the cycle by the foil rotation. This oscillation
contributes to shedding of the leading edge vortices.

The motion of leading edge vortices along the foil body is
an important factor leading to changes in the thrust generated
by an oscillating foil (Verma et al., 2022). Thus, it would be
interesting to see if such a motion can be isolated by flux terms
in FANS formulations.

As seen in Figure 9, the effect of this motion is more ap-
parent at higher harmonics due to the interaction between the
foil and leading edge vortices. This vortex motion drives the
inter-harmonic triadic coupling along the foil boundary. In
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Figure 4. Real parts of momentum budgets of ûm behind the cylinder along y+ = 1 for (a) Mode 1 and (b) Mode 2.
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Figure 5. Vortex shedding pattern of foil undergoing simultaneous heaving and pitching
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Figure 6. Real part of the first mode of the streamwise veloc-
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Figure 7. Streamwise pressure gradient corresponding to
mode 1
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Ĉ, û1

-1.6558

-0.8279

0.0000

0.8279

1.6558

Figure 8. Streamwise convective flux corresponding to mode
1

turn, this convective coupling generates strong pressure gra-
dients on the foil (Figure 10), which have a pronounced effect
on thrust generations. The appearance of these structures in
FANS analyses shows how it may be connected to important
performance characteristics, such as thrust generation of an os-
cillating foil and the utilized power. Finally, Figure 9 shows a
significant degree of triadic interaction just past the trailing
edge through χ̂3 ≈ ∇ · (û1û2). This can be inferred due to the
high saturation of contours in the wake behind the foil. As the
color scheme is referenced to the maximum momentum flux in
this region, dark contours are indicative of locations where the
inter-harmonic coupling is dominant. These convective cou-
plings suggestive of the shearing between the shed trailing and
leading edge vortices, earlier seen in the developing vortex pat-
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Figure 9. Inter-harmonic streamwise momentum flux corre-
sponding to the 3rd harmonic of an oscillating foil
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Figure 10. Streamwise pressure gradient corresponding to
the 3rd harmonic of an oscillating foil

tern in Figure 5. As this connection between vortices occurs
only during select portions of the cycle, it is natural that the re-
sulting coupling would be found at a timescale corresponding
to a higher harmonic. This suggests that FANS can highlight
complicated interactions between vortex structures, as well as
complementing other forms of wake analyses.

Conclusion
The Fourier-Averaged Navier-Stokes equations represent

a novel method based on Fourier decomposition of a flow to
gain insights into the dynamics of periodic phenomena. In
FANS operations, the momentum budgets corresponding to in-
dividual frequencies are extracted. Here, the FANS formula-
tions are presented and a basic analysis is performed by apply-
ing them to the periodic wake of a square cylinder and oscillat-
ing foil. These results show that the primary frequency, corre-
sponding to the vortices traveling downstream, are largely un-
affected by higher frequency content in the wake. This agrees
with linear stability analysis. Meanwhile, FANS builds upon
these findings by showing that the flow harmonic is gener-
ated naturally by a convective process of the large-scale struc-
tures, which is an important source of secondary velocity fluc-
tuations in the wake. Likewise, the role of convective- and
pressure-based interactions around and behind an oscillating
foil were shown in connection to the motion of the leading and
trailing edge vortices. In this way, FANS-based analysis is a
convenient method to analyze nonlinear interactions by lever-
aging information from the governing equations. Each of the
above findings indicates that FANS is capable of recreating
the results of other methods, using techniques that are widely

utilized in a fluid dynamics context. The simplicity and con-
nection to physical phenomena presented by FANS formula-
tions make it an attractive technique for analyzing periodic and
quasi-periodic flows.
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