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SUB-GRID SCALE MODELING
Mixed models, i.e. a combination of functional and struc-

tural sub-grid scale (SGS) models, are among the most suc-
cessful approaches for Large Eddy Simulation (LES). Com-
pared to purely structural models, mixed models are especially
superior in terms of stability. Chapelier et al. (2018) have re-
cently demonstrated the potential of a sub-grid activity sensor
to improve the performance of functional eddy viscosity mod-
els in regions with transitional flow features. Further, it has
been shown by Hasslberger et al. (2021) how a sub-grid activ-
ity sensor can additionally be used to rectify the incorrect near-
wall scaling of eddy viscosity base models like the standard
Smagorinsky model without explicit wall damping. Accord-
ingly, the idea here is to exploit the advantages of a sub-grid
activity sensor in the context of mixed SGS modeling.

The coherent structure function, as required in the follow-
ing analysis, is a useful quantity to characterize the structure
of turbulent flows. It is defined as FCS = Q/E, i.e. the second
invariant of the grid-scale velocity gradient tensor

Q = (Ωi jΩi j −Si jSi j)/2 (1)

being normalized by its magnitude

E = (Ωi jΩi j +Si jSi j)/2 (2)

where Si j = (∂ui/∂x j + ∂u j/∂xi)/2 is the grid-scale strain
tensor and Ωi j = (∂ui/∂x j − ∂u j/∂xi)/2 is the grid-scale ro-
tation tensor. Consequently, FCS exhibits a definite lower and
upper limit, i.e. −1 ≤ FCS ≤ +1. The values −1 and +1 cor-
respond to pure elongation/strain and pure rotation, respec-
tively. It is important to note that the constituents of Q and
E are related to fundamental quantities to describe turbulent
flows, namely the dissipation of kinetic energy into heat per
unit mass, 2νSi jSi j , and enstrophy, Ωi jΩi j.

The best-known functional SGS model is the standard
Smagorinsky model (Smagorinsky, 1963) which calculates the
deviatoric part τdev

i j = τi j − 1
3 τkkδi j of the SGS stress tensor for

incompressible flows τi j = uiu j −uiu j as

τ
EV
i j =−2 C2

Smago∆
2
√

2SklSkl Si j =−2νtSi j (3)

where ∆ is the grid size (i.e. the implicit filter width), νt is the
eddy viscosity (EV) and CSmago = 0.17 is the theoretical value
of the Smagorinsky constant.

In contrast to functional eddy viscosity models, structural
models aim to reproduce the structure of the SGS stress ten-
sor itself and, among those, the Bardina/Liu model (Bardina,
1983; Liu et al., 1994)

τ
SS
i j = ûiu j − ûiû j (4)

is based on the scale similarity (SS) principle, where (̂·) rep-
resents a suitably defined explicit test filter. In this work, the
explicit test filter for any field quantity φi, j,k at the discrete
location given by the index triple (i, j,k) is implemented ac-
cording to Anderson & Domaradzki (2012):

φ̂i, j,k =
+1

∑
l=−1

+1

∑
m=−1

+1

∑
n=−1

bl ·bm ·bn ·φi+l, j+m,k+n (5)

This three-dimensional filter is the product of the con-
volution of three one-dimensional filters with coefficients
(b−1,b0,b+1) = (c f il ,1−2c f il ,c f il) where c f il = 1/12.

The following blending scheme is based on the below ob-
servation that structural models of the scale similarity (SS)
type perform the best for moderate under-resolution of the
flow, whereas the concept of eddy viscosity (EV) becomes in-
creasingly valid the lower the relative resolution is. Hence, the
idea is to retain the superior alignment properties of SS models
in those regions where an extrapolation based on the smallest
resolved scales (which are also strongly affected by numerical
errors) is still properly working, and to blend in a more robust
EV model where physically plausible. Using a local sub-grid
activity sensor Θ, the blending scheme reads

τ
mixed,sensor
i j = τ

EV
i j Θ+ τ

SS
i j (1−Θ) (6)

where τEV
i j and τSS

i j represent any kind of eddy viscosity and
scale similarity type model, respectively. The lower the rel-
ative resolution, the higher the sub-grid activity Θ and the
higher (lower) the EV (SS) contribution is. This is also consis-
tent from a physical point of view, because “randomly” fluctu-
ating incoherent turbulence acts like diffusive motion – agree-
ing with the way eddy viscosity is reflected in the diffusive
term of the filtered Navier-Stokes equations.
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The bounded sensor function Θ is constructed as

Θ =


1
1
2

(
1+ sin

(
π

σeq −2σ +1
2(1−σeq)

))
0

if
σ < σeq
σ ∈ [σeq,1]
σ > 1

(7)

such that a smooth transition between well-resolved (σ > 1)
and insufficiently-resolved (σ < σeq) regions is obtained. Al-
though Eq. 7 is the same as in (Chapelier et al., 2018), σ is
calculated in a different manner. Rather than using enstrophy
only, σ = Ê/E accounts for both dissipation and enstrophy.
Comparison of the implicitly grid-filtered value E and the ex-
plicitly test-filtered value Ê allows to estimate the local sub-
grid activity. At the same time, the intensity-preserving (E ≈
const.; Ê ≈ const.) natural exchange between dissipation and
enstrophy in turbulent flows remains undetected by the sensor.
According to the definition of E, Eq. 2, fluctuations in strain-
and rotation-dominated flow regions can be equally well re-
flected by the sensor. This is demonstrated in Fig. 1 which
depicts conditionally averaged values of the sub-grid activity
Θ in homogeneous isotropic turbulence (details on this a-priori
analysis are provided subsequently). The original sensor for-
mulation based on enstrophy only (left panel of Fig. 1) is ob-
viously unable to detect sub-grid activity in strain-dominated
flow regions. Independent of the implicit filter width in LES,
strain-dominated flow regions are even more probable than
rotation-dominated flow regions in turbulent flows as shown by
the probability density function (PDF) of the coherent struc-
ture function FCS in Fig. 2. Agreeing with expectations, Fig.
1 demonstrates increasing levels of sub-grid activity Θ for in-
creasing under-resolution of the flow as specified by ∆/∆DNS.

The calculation of the equilibrium value σeq is identi-
cal to Chapelier et al. (2018) since dissipation and enstro-
phy are obeying the same spectral scaling. Both spectra are
proportional to κ2e(κ) with wavenumber κ and energy spec-
trum e(κ). Their peak is located at high wavenumbers (small
scales), hence also the naming as a sub-grid activity sensor.
On average, Ê < E in the inertial sub-range. The equilibrium
value is given by

σeq =

(
∆̂

∆

)−4/3

=
(√

24 c f il
)−4/3

(8)

where the ratio of explicit-to-implicit filter width ∆̂/∆ has been
further reduced to the filter coefficients following Lund (1997).
For the explicit test filter applied here, c f il = 1/12 yields σeq =

2−2/3 ≈ 0.63.

A-PRIORI ANALYSIS
To justify the above mixed modeling idea, the SGS en-

ergy transfer behavior of the separate functional and structural
base models is analyzed by means of an a-priori analysis. The
comparably well-defined state of homogeneous isotropic tur-
bulence (closely resembled by the final stage of the Taylor-
Green vortex, cf. t = 25 in Fig. 4) is chosen for this purpose.
The Direct Numerical Simulation (DNS) database, uniformly
discretized by 5123 grid points, has been explicitly filtered
using a Gaussian filter kernel for varying normalized filter
width ∆/∆DNS. It is particularly instructive to analyze the per-
formance conditional on the coherent structure function FCS
due to the intricate dissipation-enstrophy interplay in turbulent

flows. Also, the SGS energy transfer ε = τi jSi j can be de-
composed into forward scatter ε− = 0.5(ε−|ε|) and backward
scatter ε+ = 0.5(ε + |ε|). For consistency, only the deviatoric
part of SGS stress is considered for the EV model, although
the discrepancy between τdev

i j = τi j − 1
3 τkkδi j and τi j is small

here.
Figure 3 shows that for moderate filter width (∆/∆DNS =

9), the Bardina/Liu model clearly outperforms the Smagorin-
sky model, because the latter is overly dissipative. For large
filter width (∆/∆DNS = 33), both types of models are in good
agreement with the reference data. Under these conditions, the
SGS energy transfer, on average, is almost linearly increasing
from rotation- to strain-dominated regions and this can be rep-
resented also by the Smagorinsky model. Although not ex-
plicitly shown here, tendencies with respect to Reynolds num-
ber variation are expected to be similar than for filter width
variation. It cannot be seen from this a-priori analysis but it
is known that structural models tend to become unstable un-
der high filter width/Reynolds number conditions which moti-
vates the mixed model. It is worth noting that the SS model is
able to represent backward scatter in contrast to the EV model.
Backward scatter is not unphysical but is discussed as a poten-
tial source of instability for structural models in the literature
(Kobayashi, 2018; Klein et al., 2020).

A-POSTERIORI ANALYSIS
The open-source code PARIS1 (Aniszewski et al., 2021)

has been employed to solve the unsteady incompressible
Navier-Stokes equations. It uses a second-order Runge-Kutta
technique for time integration and spatial discretization is re-
alized by the finite-volume approach on a regular, cubic stag-
gered grid with second-order centered difference schemes. In
the framework of the projection method, the pressure field
is calculated by a multi-grid Poisson solver provided by the
HYPRE library.

The Taylor-Green vortex (Brachet et al., 1983) is a chal-
lenging test case for laminar-turbulent transition and this con-
figuration consists of a cube with side length 2π and periodic
boundaries in all directions. The velocity field is initialized as

u(x,y,z) = cos(x)sin(y)sin(z) (9)

v(x,y,z) =−sin(x)cos(y)sin(z) (10)

w(x,y,z) = 0 (11)

Referring to the initial state, the Reynolds number is 1600 and
the density is assumed to be constant. Two different resolu-
tions have been investigated, i.e. the benchmark DNS and a
much coarser 323 grid for all a-posteriori LES runs. Hence,
the computational costs are considerably different. The non-
dimensional simulation time ranges from t = 0 to t = 25 and
the corresponding development of the flow in the DNS is
shown in Fig. 4. Through vortex breakdown, the flow evolves
from a quasi-laminar initial condition to fairly homogeneous
fully developed turbulence at the final stage considered.

Figure 5 shows the temporal evolution of the mean ki-
netic energy and its dissipation rate for the no-model LES, the
Smagorinsky model, the Bardina/Liu model and the sensor-
based mixed model. Both the filtered and unfiltered DNS re-
sults are included as references. As expected, the EV model is
overly dissipative during the quasi-laminar initial stage. The
SS model underpredicts the peak dissipation and shows first

1http://www.ida.upmc.fr/∼zaleski/paris/
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Figure 1. Homogeneous isotropic turbulence: Means of the sub-grid activity sensor Θ conditional on the coherent structure function
FCS, where −1 and +1 correspond to pure strain and pure rotation, respectively. Results are shown for filter width ∆/∆DNS = 3 (blue),
5 (red), 9 (yellow), 13 (purple), 17 (green). Original formulation based on enstrophy on the left, present formulation based on enstrophy
and dissipation on the right.

Figure 2. Homogeneous isotropic turbulence: Probability density function (PDF) of the coherent structure function FCS, where −1
and +1 correspond to pure strain and pure rotation, respectively. Results are shown for filter width ∆/∆DNS = 3 (blue), 5 (red), 9
(yellow), 13 (purple), 17 (green).

signs of instability, i.e. oscillations of the dissipation curve,
during the high-dissipation phase around 5 < t < 15. In con-
trast, the sensor-based mixed model correctly reduces to the
filtered DNS in the initial stage, improves the peak dissipation
and also appears to be more robust during the high-dissipation
phase. A clear improvement compared to the no-model LES
can be observed as well.

The difference between the original sensor by Chapelier
et al. (2018) based on enstrophy (Ωi jΩi j) and the present mod-
ified sensor based on the sum of enstrophy and dissipation
(E = (Ωi jΩi j + Si jSi j)/2) can be discerned from Fig. 6. Al-
though the overall results are quite similar, the mixed model
using the newly proposed sensor is somewhat less oscillatory,
which can be seen especially during the high-dissipation phase
around 5 < t < 15. Only the modified sensor variant based on
E is thus used in the following.

A viable alternative for the structural part of the mixed
model is the gradient model by Clark et al. (1979):

τ
SS
i j =

∆2

12
∂ui

∂xk

∂u j

∂xk
(12)

Again, the sensor-based mixed model leads to a clear improve-
ment over the separate structural model as can be seen in Fig.

7. As expected, the curves start to diverge considerably when
the level of under-resolution becomes significant at t ≈ 4. In
this case, the improvement through the sensor-based regular-
ization is even more obvious than with the Bardina/Liu model
combination (Fig. 5).

CONCLUSIONS AND OUTLOOK
A strategy for mixed modeling in LES is proposed by

means of a sub-grid activity sensor based blending between the
functional and structural base models. This mixed model out-
performs the separate base models (here: Bardina/Liu or Clark
and Smagorinsky) for the Taylor-Green vortex test case and is
oscillation-free without additional regularization like averag-
ing (in homogeneous direction), relaxation in time or clipping
(of backscatter). It is worth noting that the overall model is
also parameter-free, apart from the choice of the test filter.

Since not discussed here, future work will focus on the
wall treatment for the proposed mixed model. This can be
achieved either by replacing the current base models with
models that already incorporate the correct wall scaling, e.g.
(Nicoud et al., 2011), or by using a wall-scaling sensor, e.g.
(Hasslberger et al., 2021), in addition to the non-wall scaling
sensor Θ for blending. Note that also the structural models by
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Figure 3. Homogeneous isotropic turbulence: Means of the “true” SGS energy transfer τDNS
i j Si j (EpsTau, continuous lines) and model

energy transfer τmodel
i j Si j (EpsMod, marker symbols) conditional on the coherent structure function FCS. Eps- and Eps+ indicate forward

scatter ε− and backward scatter ε+. Results are shown for the Bardina/Liu model (top row) and Smagorinsky model (bottom row) for
moderate, i.e. ∆/∆DNS = 9 (left), and large filter width, i.e. ∆/∆DNS = 33 (right), respectively. Note the different scales of the ordinate
axes.

Figure 4. Stages of the Taylor-Green vortex as seen in the reference DNS: Instantaneous views of FCS = 0 iso-contours coloured by
the velocity magnitude at simulation times t = 2.5, 5, 7.5, 10, 15, 25.
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Figure 5. Taylor-Green vortex: Volume-averaged kinetic energy (left) and its dissipation rate (right) versus non-dimensional time for
the reference DNS, the no-model LES, the Smagorinsky model, the Bardina/Liu model and the sensor-based mixed model.
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Figure 6. Taylor-Green vortex: Volume-averaged kinetic energy (left) and its dissipation rate (right) versus non-dimensional time for
the reference DNS, the no-model LES, the mixed model using the original sensor based on enstrophy only and the mixed model using
the newly proposed sensor based on the sum of enstrophy and dissipation.
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Figure 7. Taylor-Green vortex: Volume-averaged kinetic energy (left) and its dissipation rate (right) versus non-dimensional time for
the reference DNS, the no-model LES, the separate model by Clark et al. and the sensor-based mixed model using the structural model
by Clark et al. instead of Bardina/Liu et al.

Bardina/Liu et al. as well as Clark et al. suffer from incorrect
near-wall scaling (Silvis et al., 2017).
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