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INTRODUCTION
Subsonic swept-wing aircraft is a main mode of long-

distance passenger transport; thus, improving its efficiency
carries a significant economic and environmental impact.
Laminar Flow Control (LFC) technology has shown potential
to reduce skin friction drag by delaying laminar-turbulent tran-
sition on the wings and tail parts. However, surface irregulari-
ties, such as two-dimensional steps, caused by panel junctions
and joints, may alter the stability of the boundary layer, pro-
mote premature laminar-turbulent transition (Perraud & Ser-
audie, 2000), and reduce the effectivity of LFC. Stationary
crossflow instabilities may typically dominate the transition
path in swept-wing flows. The goal of this article is to in-
vestigate the purely stationary interaction between an imposed
stationary crossflow instability developing in a swept-wing
boundary layer and backward-facing steps of several heights.

Tufts et al. (2017) performed numerical simulations of
backward-facing-step flows and reported rather mild station-
ary crossflow growth at the step, which they do not con-
sider as the main mechanism promoting transition. Eppink
(2022) studied the evolution of the crossflow instability over
a backward-facing step via Particle Image Velocimetry (PIV)
measurements. It is hypothesized that, as a consequence of
the reversal of the crossflow velocity profile downstream of
the step, stationary crossflow vortices rotating in a sense op-
posite to the original primary ones may be amplified. Casacu-
berta et al. (2021) carried out Direct Numerical Simulations
(DNS) to study the stationary interaction between incoming
crossflow and forward-facing steps. They observed that a sys-
tem of near-wall streaky perturbation structures are induced at
the step; these develop underneath the incoming crossflow per-
turbation locally around the step. The harmonic (i.e., smaller
wavelength) components of the crossflow perturbation are sig-
nificantly destabilized by the inflectional step-distorted base-
flow profiles.

In this article, DNS are performed to study the purely sta-
tionary mechanisms of interaction between an incoming pre-
scribed crossflow instability and backward-facing steps of var-
ious heights. The main elements of the setup of Casacuberta
et al. (2021, 2022), namely the free-stream evolution, step

heights and location, and stationary crossflow properties are
reproduced in our present work to facilitate the direct compari-
son of mechanisms of interaction in backward- versus forward-
facing steps. Reference data of a no-step case from their inves-
tigation is used for comparison. Unsteady perturbation effects
ultimately leading the laminar-turbulent transition process are
here discarded to isolate the stationary form of flow mech-
anisms; inclusion of unsteady structures in a possibly com-
plex flow scenario would likely mask main mechanisms of the
present analysis. The stationary perturbation field is decom-
posed in spanwise Fourier modes. The effect of step-induced
base-flow features, such as recirculating flow, inflectional pro-
files, or local pressure gradient on altering the evolution of
the stationary perturbation field is analyzed qualitatively and
quantitatively.

METHODOLOGY
The incompressible swept-wing flow is modeled as flat-

plate flow with an externally imposed airfoil-like pressure gra-
dient in the chordwise direction. The free-stream velocity is
decomposed into a chordwise component, u∞, and a spanwise
component, w∞ = −1.24u∞, to model the effect of sweep an-
gle. Pressure measurements from wind-tunnel experiments on
a 45◦ swept wing (Rius-Vidales & Kotsonis, 2021) are used
to guide the DNS setup. The inflow boundary layer thickness,
δ0 = 7.71×10−4 m, and free-stream velocity, u∞ = 15.10 m/s,
are chosen as global characteristic quantities and used as non-
dimensionalizing values. The reader is referred to Casacuberta
et al. (2021, 2022) for further details on the flow problem and
setup.

The main coordinate system reads x = [x y z ]T , where
x, y, and z indicate the chordwise (i.e. normal to the virtual
leading edge), wall-normal and spanwise directions, respec-
tively. A stationary crossflow mode, computed as solution to a
local linear Orr-Sommerfeld analysis of the base flow profile,
is prescribed at the inflow with an amplitude of 3.5×10−3u∞
for all step cases. The DNS are performed for three different
step heights, h = {0.59,0.76,0.97}δ0, all of which are below
the undisturbed boundary layer thickness δ99,h at the virtual lo-
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cation of the step. Periodic boundary conditions are prescribed
on the sides of the computational domain to constrain the per-
turbation growth in the chordwise direction. The spanwise do-
main length (i.e, the fundamental spanwise wavelength) is set
to λz = 7.5 mm.

The DNS of the unperturbed two-dimensional spanwise-
invariant base flow and the stationary developed three-
dimensional flow are performed on an indentical computa-
tional domain. Letting q = [u v w p ]T be the vector of state
variables, the steady developed flow, q(x), obtained from DNS
is expressed as the sum of the spanwise-invariant laminar base
flow, qb (x), and a steady perturbation field, q′ (x).

To gain insight on the perturbation behaviour, the field
q′ (x) is decomposed in spanwise Fourier modes:

q′k =
N

∑
j=0

Ak
(0, j)|q̃k|(0, j)ei(φ k

(0, j)+ jβ0z)
, (1)

where N is the number of modes considered, k = {u,v,w, p}
expresses a component of the state vector, |q̃k|(0, j) =

|q̃k|(0, j)(x,y) is the normalized shape function of a Fourier
mode j, Ak

(0, j) = Ak
(0, j)(x) is the amplitude, φ k

(0, j) is the phase,

i =
√
−1, β0 = 2π/λz is the fundamental spanwise wavenum-

ber, and λz is the fundamental spanwise wavelength, which is
set equal to the spanwise domain length.

Following the discussion presented in Casacuberta et al.
(2021), the base-flow components are decomposed based on
the crossflow orientation. For that purpose, the local angle be-
tween the external inviscid streamline and the x-direction is
evaluated. It reads φ(x) = arctan(w∞/uext(x)), where uext de-
notes the external chordwise velocity in the outer-flow region.
Accordingly, the base-flow velocity components locally tan-
gent and orthogonal to the inviscid streamline direction are ex-
pressed as us,b = ub cos(φ)+wb sin(φ) and ws,b =wb cos(φ)−
ub sin(φ), where ub and wb are the base-flow chordwise and
spanwise velocity components, respectively. The component
ws,b is the so-called crossflow velocity.

The incompressible Navier-Stokes equations are solved
numerically with INCA, a conservative finite-volume solver
(Hickel & Adams, 2008). The Navier-Stokes equations are
marched in time with a third-order Runge-Kutta method. A
fifth-order upwind scheme is used to discretize the convec-
tive terms. The Selective Frequency Damping (SFD) method
(Åkervik et al., 2006; Casacuberta et al., 2018) is applied to
numerically enforce a fully stationary solution of the devel-
oped flow. As convergence criterion, the L2-norm of the SFD
residual is chosen to be ε = 10−6.

The computational domain encompasses 0≤ x/δ0 ≤ 517,
yst/δ0 ≤ y/δ0 ≤ 26 and −4.86 ≤ z/δ0 ≤ 4.86; the baseline
flat plate is set at y = 0 and the step extends until yst/δ0 =
−0.59,−0.76,−0.97 for step cases I, II, and III, respectively.
For all cases, the step is located at x/δ0 = 177.62. The co-
ordinate expressing the chordwise distance relative to the step
is hereafter denoted by xst = x− 177.62δ0 and, downstream
of the step, the relative wall-normal distance is denoted by
y∗ = y− yst. The results presented in this article have been
obtained with a grid containing 2×106 and 3.7×107 cells for
the base- and developed-flow runs, respectively. The reader is
referred to Casacuberta et al. (2022) for further details on the
topology of the computational grid.

Table 1: Base-flow properties in the near-step region.

Case Step I Step II Step III

h/δ0 0.59 0.76 0.97

h/δ99,h 0.31 0.40 0.52

lrev/δ0 9.6 12.8 17.2

l∇p/δ0 13.3 17.1 20.5

lws,b/δ0 26.7 31.9 38.3

|urev| (%) 5.6 6.8 8.25

|wrev
s,b | (%) 10.0 12.0 14.5

RESULTS AND DISCUSSION

1 BASE-FLOW FEATURES
The presence of the step distorts the organization of the

boundary-layer flow and introduces new base-flow structures
which are not present in the reference, i.e., no-step, case. The
most prominent feature of the base flow is recirculating flow
immediately downstream of the step, see Figure 1(a). Its ge-
ometrical properties are here characterized by an isoline of
ub = 0; see Table 1. The xst = lrev denotes the stagnation point
further downstream. The strength of the recirculating flow,
i.e., the maximum reverse velocity, |urev| with urev < 0, attains
between 6% and 8% relative to uext in the step cases (Table
1). Such values are close to the threshold for a global insta-
bility to develop in classic pressure-driven separation bubbles
(Rodrı́guez et al., 2013). However, by constraining the inter-
action to be stationary via the usage of SFD, no manifestation
of a possible global instability was captured.

The pressure field is locally altered by the presence of
the step. A region of strong adverse pressure gradient arises
immediately downstream of the step. It extends up to approx-
imately xst/δ0 = 20.5 in step case III (Table 1); here, l∇p de-
notes the distance from xst = 0 to the threshold ∂ p/∂x = 0
downstream of the step at the wall. Furthermore, a region of
enhanced favourable pressure gradient develops immediately
upstream of the step. The pressure field around the step in the
present DNS is in qualitative agreement with that reported by
Tufts et al. (2017).

Casacuberta et al. (2022) report a strong modulation of
the base-flow streamlines in z locally around the corner of a
forward-facing step for a setup identical to the one presented
here. In the current backward-facing-step flow, no signifi-
cant deflection of the streamlines in z upstream of the step
is observed. This may be ascribed to the different pressure-
gradient strength induced upstream of the forward- versus the
backward-facing step. In fact, the overall organization of the
flow upstream of the step appears to not be significantly al-
tered by the presence of the backward-facing step. Down-
stream of the step, the evolution of the flow in x above the flow-
separation region is rather gradual. Contrary to the forward-
facing step case (Casacuberta et al., 2022), the streamlines of
the flow do not visually display an abrupt turn in the x-z plane.

Next to flow reversal (i.e., ub < 0), the step induces re-
versal of the crossflow profile (i.e., ws,b < 0) as well; see Fig-
ure 1(b-g). The peak magnitude of the reserved crossflow pro-
file in y, denoted by |wrev

s,b |, is 10% and 15% relative to uext in
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Figure 1: Contour of base-flow velocity, ub, in step III (a). Evolution in x of the crossflow profile, ws,b, for the reference
no-step (thin solid black), step I (dash-dotted blue), step II (dotted orange), and step III (thick solid red) cases (b-g).
Isolines of velocity reversal ub = 0 (solid cyan) and crossflow inflection points ∂ 2ws,b/∂y2 = 0 (dash-dotted magenta).

step cases I and III, respectively (Table 1). It is noteworthy
to mention that the evolution of the crossflow profile in x is
in close qualitative agreement with the behaviour reported by
Eppink (2022): surprisingly, close downstream of the step, the
strength of the crossflow reversal is approximately similar for
all steps studied here. However, when moving further in x, the
reversed-flow strength is the greatest for the largest step case
(Figure 1(c,d)).

The crossflow-reversal region downstream of the step is
accompanied by additional inflection points in the crossflow
profile that do not manifest in the reference case. These new
inflection points arise close to the wall, underneath the original
(primary) crossflow inflection points. The length in x of this
region featuring secondary step-induced inflection points, lws,b ,
increases with the step height; see Table 1.

2 FUNDAMENTAL
PERTURBATION EVOLUTION
Next, the behaviour of the fundamental perturbation com-

ponent, i.e., the primary perturbation Fourier mode β = β0, is
analyzed. The discussion is restricted to near-step effects. Fig-
ure 2(a) portrays the chordwise evolution of the amplitude of
the primary Fourier mode. Upstream of the step, the ampli-
tude curves of the step cases are essentially identical to that
of the no-step reference case. This was expected since, as it
was previously mentioned, the steps have only a very weak
upstream influence. Close downstream of the step, the funda-
mental perturbation component is significantly stabilized. This
local stabilizing effect appears to be proportional to the step
height (Figure 2(a)). Similarly, Casacuberta et al. (2022) re-
port a local stabilizing influence of sufficiently large forward-
facing steps to the incoming fundamental stationary crossflow
perturbation.

When considering the evolution of the overall amplitude

function, Aũ
(0,1)|q̃u|(0,1), a prominent additional peak develops

in step cases II and III for xst > 0 close to the wall (Figure
3(a)). This topological feature has been reported for forward-
facing (Tufts et al., 2017; Casacuberta et al., 2022), as well as
for backward-facing-step flows (Eppink, 2022). In step case
I this near-wall peak in the perturbation shape is either not
present or very weak; see Figure 3(c). In step case III, the loca-
tion of the additional peak in y reasonably matches the spatial
location of the step-induced inflection points in the base flow.

The amplitude of the near-wall peak in step case III grows
rapidly in x and, eventually, slightly surpasses the strength of
the primary upper peak; see Figure 3(a). The primary peak
of the perturbation shape may be associated to the original
crossflow perturbation that develops further off the wall. In
recent forward-facing-step flow investigations, the secondary
near-wall peak downstream of the step was associated to the
manifestation of spanwise-alternating perturbation streaks in-
duced at the step corner (Casacuberta et al., 2021, 2022). De-
spite topological similarities between such additional peaks
in forward- versus backward-facing-step flows, in the present
case, the near-wall peak in the perturbation shape may be rep-
resenting a different flow mechanism than the one reported for
forward-facing steps.

Eppink (2022) proposes that the destabilizing influence
of new step-induced inflection points downstream of the step
triggers stationary-crossflow growth. In the present DNS, the
appearance of the secondary perturbation peak near the wall
within the x-region featuring reversed crossflow seems to sup-
port the observations of Eppink (2022). In particular, visual
correlation is found between the step-induced inflection point
location and the perturbation amplification near the wall (Fig-
ure 3(a)).

To shed light on the nature of the mechanism feeding per-
turbation growth, the perturbation shape functions and growth
rates from DNS are next compared to the results of linear sta-
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Figure 2: Evolution of the amplitude of the chordwise-velocity perturbation Fourier modes β = β0 (a) and β = 2β0 (b).
Reference no-step (thin solid black), step I (dash-dotted blue), step II (dotted orange), and step III (thick solid red).
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Figure 3: Chordwise-velocity perturbation amplitude function in step cases III (a,b) and I (c,d) for β = β0 (a,c) and
β = 2β0 (b,d) Fourier modes. Base-flow reversal ub = 0 (solid white), base-flow crossflow inflection points

∂ 2ws,b/∂y2 = 0 (dashed yellow).

bility analysis. A linear local Orr-Sommerfeld (OS) eigen-
value problem is solved on the DNS base flow for the refer-
ence and step cases from the downstream vicinity of the step
until approximately xst/δ0 = 82. The analysis is carried out
for β = β0 to characterize fundamental perturbation effects.
While the flow field is highly non-parallel close to the step, the
results of an OS analysis are expected to elucidate on possi-
ble (in)stability effects associated to the inflectional base-flow
profiles.

Downstream of all steps, two main unstable OS eigenso-
lutions are identified. One is associated to the original cross-
flow mode and, as such, it is also captured in the reference
case; this is mainly supported by the close match between the
DNS perturbation shape and the eigenfunction associated to
this eigenmode (see solid red line and blue circles in Figure
4(e), respectively). In addition, a new unstable OS eigensolu-
tion is identified in all step cases, which is not present in the
reference case.

The trajectory in the complex plane of the aforementioned
two families of OS eigenvalues as a function of x is depicted in
Figure 4(a-d) for all cases studied. Here, αOS = αOS

r + iαOS
i

denotes the corresponding eigenvalues. As mentioned previ-
ously, shortly downstream of the step, the incoming crossflow
mode is stabilized for all step cases in the DNS (Figure 2(a)).

Conformably, the eigenvalue associated to the OS crossflow
mode initially lies in (or close to) the stable region of the eigen-
spectrum. When moving in x, it gradually shifts towards the
unstable half-plane. This is consistent with the DNS results;
see Figure 2(a). Sufficiently downstream of the step in all step
cases, the properties of the OS eigenmode originally associ-
ated to the crossflow mode gradually resemble those displayed
by the reference case. Next to growth rate, the peak location
in y of the OS eigenfunction associated to the crossflow mode
reasonably matches that of the DNS shape function sufficiently
downstream of the step; see Figure 4(f ).

Considering the outcome of the analysis to this point, it
can be hypothesized that the second family of unstable OS
eigenmodes only identified in the step cases is associated to
an inflectional instability supported by the step-distorted base-
flow profiles. The fact that the wall-normal peak of the OS
eigenfunction approximately coincides with the y-location of
the step-induced inflection point in the base flow (Figure 4(e)
and Figure 1(c)) would further strengthen this claim. The
growth rates of this second family of eigenmodes largely ex-
ceeds that of the original crossflow; see Figure 4(b-d). This
may highlight the strongly unstable nature of this new insta-
bility mechanism and would serve as a plausible explanation
for the large perturbation amplification captured in the DNS

4



12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan, July 19–22, 2022

-10

-5

0

82

Im
(α

O
S

i
)δ

0(
×

10
2 )

0.55 0.6 0.65 0.7

-10

-5

0

Re(αOS
r )δ0

Im
(α

O
S

i
)δ

0(
×

10
2 )

0.55 0.6 0.65 0.7

Re(αOS
r )δ0

0 0.5 1
0

1

2

3
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Figure 4: Trajectory of Orr-Sommerfeld eigenvalues in the range xst/δ0 ∈ [2,82] (bright-to-dark for increasing x) for the
reference no-step (a), step I (b), step II (c), and step III (d) cases. Numerals indicate xst/δ0 locations. Orr-Sommerfeld
shape functions for β = β0 (orange and blue circles) and DNS (solid red) at xst/δ0 = 14 (e) and 40 (f ) for step III indicated
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close to the wall in step case III; see Figure 3(a). Naturally,
as the step height is decreased, the destabilizing influence of
the inflection points weakens. This is consistently observed
both in the DNS amplitude evolution (Figure 3(a,c)) and in
the OS eigenspectrum (Figure 4(b-d)). Furthermore, it should
be noted that this family of new eigenmodes in the step cases
only manifests approximately in the chordwise region where
the additional step-induced inflection points develop.

3 HARMONIC PERTURBATION EVOLUTION
The analysis is next extended to the harmonic (i.e.,

smaller wavelength) perturbation behaviour. For perturbations
with β = 2β0, amplification is measured downstream of xst in
all step cases (Figure 2(b)). Significant amplification is ob-
served for the harmonics β = 3β0, β = 4β0, and β = 5β0 as
well, see Figure 5. For the sake of simplicity, the discussion is
here focused on the β = 2β0 mode since it is representative of
the main qualitative harmonic behaviour. For the largest step
case, the amplitude of the Fourier mode β = 2β0, Aũ

(0,2), sur-
prisingly exceeds that of the fundamental mode, β = β0, im-
mediately downstream of the step (Figure 2). The main peak
of the shape function |q̃u|(0,2) in y arises close to the location of
the secondary near-wall peak in the profile of the fundamental
Fourier mode (Figure 3(a,b)). This feature is observed in all
step cases. Following the discussion provided in the previous
section, the present results suggest a destabilizing influence of
the step-induced inflection point to perturbation with β = 2β0
as well.

In a fashion similar to the analysis of the fundamental per-
turbation component, β = β0, an Orr-Sommerfeld eigenvalue
problem is here solved for β = 2β0. An unstable eigensolu-
tion is identified, which does not manifest in the reference no-
step case. Figure 6(a-d) depicts the evolution of the associated
eigenvalue in the complex plane as a function of x, and Fig-
ure 6(e) portrays the corresponding OS eigenfunction together
with the DNS profile. Initially in x, the OS eigenvalue lies in
the unstable region implying that, in agreement with the DNS
results, the base flow is destabilizing. This is not the case in
the reference no-step configuration since the harmonic growth
is mainly driven by non-linear perturbation interactions. Cor-
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,j
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Figure 5: Evolution of the amplitude of the chordwise-
velocity perturbation Fourier modes β = 0 (thick solid
black), β = 2β0 (dash-dotted blue), β = 3β0 (dashed
magenta), β = 4β0 (dotted orange), β = 5β0 (loosely
dotted teal) for step III.

respondingly, the associated OS eigenvalue remains in the sta-
ble region for all x. Interestingly, the trajectory in the complex
plane of this new unstable eigenvalue manifesting in the step
cases for β = 2β0 (Figure 6(b-d)) closely follows that of the
additional unstable eigenvalue in the β = β0 space. The peak
in y of the associated β = 2β0 OS eigenfunction at xst/δ0 = 10
matches the y-location of the peak from DNS and lies close to
the step-induced inflection point (Figure 6(e) and Figure 1(c)).
Therefore, the present results provide evidence that the har-
monic field is significantly destabilized at the step due to an
inflectional instability associated to the base-flow distortion in-
troduced by the step.

CONCLUSIONS
Direct Numerical Simulations (DNS) are performed to

study the interaction between an imposed stationary crossflow
mode and backward-facing steps of several heights immersed
in an incompressible three-dimensional swept-wing boundary
layer. The behaviour of the unperturbed laminar base flow and
the stationary perturbation field at the step are presented and

5



12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Osaka, Japan, July 19–22, 2022

-15
-10

-5
0

Im
(α

O
S

i
)δ

0(
×

10
2 )

1.1 1.2 1.3 1.4
-15
-10

-5
0

Re(αOS
r )δ0

Im
(α

O
S

i
)δ

0(
×

10
2 )

1.1 1.2 1.3 1.4

Re(αOS
r )δ0

0 0.5 1
0

1

2

3
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discussed. The analysis is restricted to the near-step regime
and to perturbation effects of stationary nature. To illustrate
similarities and differences with main mechanisms and struc-
tures in forward-facing-step flows, the present setup is iden-
tical to that employed in recent numerical investigation on
forward-facing steps (Casacuberta et al., 2021, 2022).

Both the chordwise extension and peak reverse velocity of
the flow-separation region downstream of the backward-facing
steps are significantly larger than in forward-facing steps of
identical height. The base-flow profiles downstream of the
backward-facing step display two families of inflection points
in the crossflow component; one is associated to the original
inflection point also present in the reference no-step case. The
second is induced by the presence of the step.

It is found that locally around the step, the fundamental
crossflow perturbation is stabilized. At the same time, pertur-
bation amplification is measured close to the near-wall inflec-
tion point location, suggesting a destabilizing influence of the
latter. The DNS results are compared to the results of a linear
local Orr-Sommerfeld (OS) stability analysis on the DNS base
flow. For perturbations associated to the fundamental span-
wise wavelength, two main unstable eigensolutions are identi-
fied and associated to 1) the original stationary crossflow mode
and 2) an inflectional instability that would be associated to a
new family of near-wall inflection points induced by the step.

When considering the harmonic perturbation field of
smaller wavelength, a significant destabilization is measured
close to the step. An OS unstable eigenmode is identified for
perturbations with half the fundamental wavelength; the topol-
ogy of the associated OS eigenfunction and the results of the
overall analysis suggest that the step-induced near-wall inflec-
tional profiles support an inflectional instability for harmonic
wavelengths as well. Similar as in forward-facing-step flows,
the inflectional profiles induced by the step support significant
destabilization of the harmonic perturbation components.

The underlying inflectional instability is proposed as a
main step-flow mechanism purely driven by the base flow
modification imparted by the step. Furthermore, based on the
aforementioned considerations, we conclude that the results of

the OS analysis provide insightful information on the nature
and evolution of the stationary perturbation field.

REFERENCES
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