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ABSTRACT
Hypersonic vehicles often present curved geometries and

rough surfaces, directly affecting the boundary layer topology.
An important feature of the boundary layer in such conditions
is a system of streaks. These streaks induce a flow distortion
and lead to a new set of unstable modes. We study the ef-
fect of this boundary layer modification using Direct Numeri-
cal Simulation (DNS) of a flow at 𝑀∞ = 6.0 over a flat plate.
Optimal disturbances of increasing amplitudes are used to de-
sign a set of three stationary base flows containing growing
streaks. We then perform DNS and linearised DNS of these
base flows subjected to white-noise forcing. The forcing leads
to the emergence of an ensemble of modes, which we iden-
tify and track with a flow decomposition using SPOD and Flo-
quet theory. The transition scenarios for the streaky flows are
studied. Specifically, we observe the early dominance of low-
frequency modes in contrast with the Blasius boundary layer
and previous PSE studies where the second Mack mode was
given as dominant. Finally for this specific case, we high-
light the importance of taking into account broadband forcing
to study the streaky baseflows in order to appropriately track
the evolution of relevant unstable modes.

Introduction
The geometry of hypersonic vehicles often resembles a

slender geometry starting with a blunt forebody to reduce the
stagnation temperature at the nose-tip. It has been demon-
strated by Stetson (1983) that the transition dynamics can be
strongly related to this bluntness (curvature radius) and that
for large bluntness, transient growth of streaks is an important
ingredient in the transition process (Paredes et al., 2017a). Ad-
ditionally, to alleviate the substantial heat fluxes, the thermal
protection systems of such vehicles are designed to be ablative,
progressively inducing the appearance of distributed rough-
ness on the walls. This significantly increases the complexity
of the transition process through modal growth and mecha-
nisms issued from the deformed base flow associated with the
roughness (Schneider, 2008). This may result in steady streaks

that arise due to the lift-up mechanism.
While the evolution and breakdown of the hypersonic

boundary layer for selected modal instabilities have been well
documented (Franko & Lele, 2013), the path to transition via
non-modal mechanisms lacks a clear understanding at high ve-
locities. Recent studies by Paredes et al. (2017b, 2019) have
provided a description of the linear growth of selected modes
supported by the streaky boundary layer using PSE analy-
sis. These studies demonstrated the co-existence of modes
destabilised by the streaks and the usual second mode (Mack
modes) and presented an overview of the linear amplification
of selected modes for increasing streak amplitudes. Specifi-
cally, at 𝑀∞ = 5.3 on a sharp cone, the second Mack-modes
family was found to dominate for streak amplitudes up to 40%
of 𝑢∞. At hypersonic speed, the aforementioned PSE study
also demonstrates stabilising effect of streaks on the second
Mack mode growth for streak amplitudes around 10% of 𝑢∞.
However, investigation of the different modes receptivities and
non-linear effects has not been addressed. Therefore, to com-
plete these previous studies, the current work aims at providing
insight into the receptivity, growth and non-linear dynamics of
instabilities on a streaky base flow.

This study is organised as follows. After having defined
the specifics of the computational framework, the base flows
and forcing are described. Then the obtained disturbance fields
from the DNS and LDNS are discussed. We first present
an analysis of the linearly dominant modes at the end of the
domain. Then, we decompose the disturbance fields using
Floquet-SPOD and discuss the unstable modes. Finally, we
track the dominant modes within the DNS domain and discuss
the dependence of the transition scenario on the streak ampli-
tude.

Simulation framework
A Direct Numerical Simulation (DNS) code:

CurviCREAMS has been developed and is used to analyse the
linear and non-linear stages of the hypersonic boundary-layer
transition. The code solves the compressible Navier-Stokes
equations for a mixture of thermally perfect gases in gener-
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alized coordinates. The governing equations are computed
in a finite-difference framework using 8th-order schemes
and an adaptive shock capturing methodology consistent
with the curvilinear framework. Additionally, to compare
the linear and non-linear dynamics of disturbances evolving
in the boundary layer, a discrete linearization procedure
is implemented to perform Linearised DNS (LDNS). The
construction of the LDNS is done in the spirit of Fosas de
Pando et al. (2012) and is described hereafter. Consider the
discrete non-linear operator of the Navier-Stokes equations:
N(𝑞𝑞𝑞), for a set of initial and boundary conditions. The
dynamical evolution of any state vector 𝑞𝑞𝑞(𝑥, 𝑡) reads:

𝜕𝑞𝑞𝑞

𝜕𝑡
=N(𝑞𝑞𝑞). (1)

Considering that the DNS code can compute N(𝑞𝑞𝑞) for any
given 𝑞𝑞𝑞, the tangent linear operator L at a fixed point 𝑞𝑞𝑞0 (𝑥)
can then be extracted from the non-linear code by a first-order
approximation,

L(𝑞𝑞𝑞0)𝑞𝑞𝑞′ =
N(𝑞𝑞𝑞0 + 𝜀𝑞𝑞𝑞′) −N (𝑞𝑞𝑞0)

𝜀
, (2)

with 𝜀 a small value. This yields the linear dynamics of a
disturbance vector 𝑞𝑞𝑞′ around 𝑞𝑞𝑞0 :

𝜕𝑞𝑞𝑞′

𝜕𝑡
= L(𝑞𝑞𝑞0)𝑞𝑞𝑞′. (3)

Then, depending on its form, the disturbance vector 𝑞𝑞𝑞′ intro-
duced in Eq. 2 can be used either to extract the jacobian matrix
L for a global stability analysis or to compute the linear time
evolution of a chosen disturbance around 𝑞𝑞𝑞0. The latter ap-
proach is employed here. Therefore, the linear problem is time
marched using the same schemes and boundary conditions as
the non-linear solver for the same computational cost, allow-
ing rigorous comparisons between LDNS and DNS results.

Setup and base flows
We consider the spatial development of a boundary layer

over an adiabatic flat plate at 𝑀∞ = 6.0, 𝑅𝑒𝛿∗ = 28000 and
𝑇∞ = 273.15𝐾 . This boundary layer is developed from self-
similar profiles injected at the inlet, from which we take the
displacement thickness 𝛿∗ as the reference length. The domain
is of size 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 = 350× 15× 4𝜆𝑆 , with 𝜆𝑆 the streaks
spanwise wavelength. Accounting for the sponge zones, we
use a grid of 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 = 4130× 335× 300. On this base
flow, the streaks are generated by a volume of stationary forc-
ing close to the inlet and centred at 𝑥 𝑓 = 5.0. This stationary
forcing consists of optimal vortical disturbances obtained with
a 1D locally parallel, spatial transient growth analysis for a
base flow profile at 𝑥 = 5.0. The spatial transient growth analy-
sis is carried out at a frequency 𝑓 = 0.0 for a range of increasing
spanwise wavenumbers to find the most amplified disturbance
at the end of the domain. We ensure that upstream-travelling
modes are filtered out from the spectrum before computing the
spatial transient growth (Jordan et al., 2017). To obtain opti-
mal disturbances, we seek to maximize the gain 𝐺 (𝑥 = 350)
between an initial disturbance 𝑞𝑞𝑞0 and a final response 𝑞𝑞𝑞 𝑓 , de-
fined as follows, with the norm | | • | |𝐸 taken as the compress-
ible energy norm (Hanifi et al., 1996).

𝐺 =
| |𝑞 𝑓 | |𝐸
| |𝑞0 | |𝐸

(4)
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Figure 1: Rescaled transient growth gain 𝐺 as a function
of the spanwise wavenumber

This way, optimal vortices are found to have a spanwise
wavenumber 𝛽𝑆 = 0.31 similar to Andersson et al. (2001);
Paredes et al. (2019) and the optimal disturbance gain evolu-
tion with 𝛽 = 2𝜋/𝜆 is given in Fig. 1. This spanwise wave-
length serves as a parameter to define the spanwise exten-
sion of the DNS domain. We compute four streak periods
(𝑧 ∈ [0,4𝜆𝑆]) to account for the subharmonic secondary in-
stability (Andersson et al., 2001) and eventual instabilities of
longer wavelength.

The linear optimal forcing is non-linearly propagated
downstream with the DNS. We choose to study three cases of
streak amplitudes 𝐴𝑠𝑢 (𝑥) = 1

2
(
max𝑦,𝑧 𝑢′(𝑥) −min𝑥,𝑦 𝑢′(𝑥)

)
,

named A1, A2 & A3. These are respectively constructed by in-
creasing the initial optimal disturbance amplitude 𝐴0. The as-
sociated streak amplitude evolution along the domain is given
in Fig. 2a. These cases span the streak amplitudes studied by
Paredes et al. (2019), with further emphasis on high-amplitude
streaks (A3). We show the final shapes of the steady streaks �̄�𝑞𝑞
modulating the base flow in Fig. 2b.

As we aim to understand which mode dominate, without
selecting specific modes a priori, we introduce a white noise
made of pressure disturbances in a volume centred at 𝑥 = 5.0.
We generate this noise following the procedure developed by
Hader & Fasel (2019), slightly adapted to our case. We chose
the forcing amplitude at 𝐴 𝑓 = 5×10−3 to trigger transition in
the most sensitive case of the A3 streaks. Using this forcing,
we perform, for each streak amplitude, DNS and LDNS sim-
ulations. The DNS allows us to get insights in the transition
scenario, whereas the LDNS supports the study by capturing
the linearly most amplified modes from the forcing.

For each simulation, we perform a time sampling of the
solution to build a discrete state vector 𝑞𝑞𝑞. We decompose this
vector in frequency-wavenumber space to clarify the transi-
tion process. This analysis is supported by the results of a
spatial 1D LST (Linear Stability Theory) analysis of a non-
streaky boundary layer at the same flow conditions. We use
this LST study to determine the frequency of the most am-
plified Mack mode in the domain. This mode, being the in-
stability of highest frequency, guides us in selecting a proper
Nyquist frequency. Obtaining a second Mack mode frequency
of 𝑓𝑀 ≈ 0.28 close to the inlet, we use a Nyquist frequency
of 𝑓𝑠 = 1.3 to be able to capture this mode and its first har-
monic. The sampling is performed over 1300 convective times
𝑡𝑐 = 𝛿∗/𝑢∞, resulting in 1300 snapshots of the flow evolution
presented in next section.
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(a) Streaks amplitude 𝐴𝑠𝑢 (b) Streaks velocity disturbance 𝑢′.

Figure 2: Streaks amplitude evolution and final streaks shape at 𝑥 = 350

Figure 3: Top : normalised contours of axial velocity from the DNS at 𝑦 = 1.5𝛿∗. Bottom : associated LDNS axial
disturbance velocity 𝑢′ at 𝑥 = 350. Dashed lines : contours of the base flow axial velocity.

Linear and non-linear disturbance fields
A first investigation is made with the DNS response to

the white-noise forcing and the associated linear disturbances
fields from the LDNS. These fields are presented in Fig. 3
for the DNS velocity field and the LDNS disturbances field
obtained with Eq. 3. To help identify the growing modes, we
also performed a 2D locally parallel LST at 𝑥 = 350 for the
streaky base flows. Out of conciseness, we only present the
relevant unstable modes eigenfunctions on the left side of Fig.
5 for the first mode family (FM), second Mack mode family
(MM) and streak modes family (SM). These modes serve as a
reference for the identification of observable flow structures in
Fig. 3.

The DNS velocity fields show various secondary struc-
tures as a function of streak amplitude. The A1 case shows a
short streamwise wavelength in the velocity field that has no
clear symmetry. This symmetry being defined as the symme-
try of the axial disturbance velocity distribution about the low-
speed streaks centerline. The associated LDNS disturbances
look to comprise a superposition of many modes under this
broadband forcing. For the A2 case, a spanwise motion of
the streaks with a varicose organisation is noticed. Associated
LDNS fields depict a marked anti-symmetric and subharmonic
(𝜆 = 2𝜆𝑆) disturbance distribution on the top of the boundary
layer, suggesting the dominance of a single linear subharmonic
and sinuous mode. Finally, the A3 case undergoes transition to
turbulence before the end of the domain, following a sinuous
motion of the streaks. The associated LDNS disturbance field
at the end of the domain shows a superposition of at least two
modes. One is spanwise harmonic (𝜆 = 𝜆𝑆) and the other is
subharmonic, but both are anti-symmetric with respect to the

low-speed streaks. This superposition suggests a competition
mechanism between the modes triggered by the white-noise
forcing that can be made clear by the decomposition of the
solution fields.

Sparse L-periodic SPOD formulation
We decompose the disturbances vector 𝑞𝑞𝑞′

𝑖
for a case 𝐴𝑖

in an optimal orthogonal basis using SPOD (Schmidt & Colo-
nius, 2020). We point out that some special care should be
given to the decomposition in our case. Considering the ab-
sence of an homogeneous direction in 𝑧 for our base flow
(i.e. 𝜕�̄�𝑞𝑞/𝜕𝑧 ≠ 0), the usual decomposition into single span-
wise modes to reduce the size of the problem cannot be per-
formed. Nonetheless, given the L-fold symmetry of the streak
pattern in the z-direction, with 𝐿 = 4 here, we can make use of
the Floquet theory to reduce the size of the analysis. Hence,
the spanwise direction of 𝑞𝑞𝑞 can be decomposed in three Flo-
quet components for the 𝜆 = [𝜆𝑆 ,4𝜆𝑆 ,2𝜆𝑆] spanwise periodic
modes given respective Floquet exponents 𝑀 = [0,1,2], which
respectively refers to harmonic, 4-streaks and subharmonic
spanwise periodicity. Using the spanwise Fourier transform
(•̃), we obtain a complete basis of spanwise wavenumbers in-
dexed by 𝑙 for each Floquet exponent 𝑀 ,

q′(𝑥, 𝑦, 𝑧) =
∑︁
𝑀

∑︁
𝑙

q̃′
𝑀−𝐿𝑙 (𝑥, 𝑦)𝑒

𝑖 (𝑀−𝐿𝑙)𝑧 . (5)

Following initial work on the SPOD formulation using Flo-
quet theory by Rigas et al. (2019), where the use of spanwise-
modes sparsity was not made to reduce the SPOD problem
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Figure 4: First SPOD eigenvalue energy at 𝑥 = 350. Black : full spanwise modes base. Colors : spectrum by Floquet
exponent. Blue : harmonic ; green : subharmonic ; red : 4-streaks spanwise periodicity.

size. We devise a complete development in the frequency-
wavenumber domain to reduce the SPOD cost by only using
relevant spanwise wavenumbers with respect to the streak pe-
riodicity considered. These developments are summarised in
what follows.

We start with the usual cross-spectral density formulation
Sff, with �̂�𝑄𝑄 the blocks matrix whose columns are made of a se-
lected frequency issued from the time Fourier transform of 𝑞𝑞𝑞′,
using blocks of size 𝑁fft = 128. Noting the hermitian transpose
�̂�𝑄𝑄

𝐻
and the space metrics 𝑑𝑉 , we write :

Sff =

∫
𝑉

Q̂𝐻WQ̂dV. (6)

W is the matrix form of the compressible energy norm, and it is
a function of the non-homogenous base flow �̄�𝑞𝑞. This inhomo-
geneity of the base flow is what complicates formulating the
sparse SPOD, in contrast to the homogeneous case, where just
the 𝛽 = 0.0 component of the base flow can be used. Specif-
ically, a sparse SPOD should only take the relevant spanwise
modes associated with the particular streak periodicity consid-
ered (harmonic, subharmonic, ...) to alleviate the computa-
tional cost of decomposing the DNS database. Hence, start-
ing by from Eq. 6 in frequency-space domain, both the matri-
ces W and Q̂ in Eq. 6 have to be Fourier transformed in the
z-direction and only the relevant modes retained. Therefore,
with (•̃) the Fourier transform in 𝑧, and using the property of
the Fourier transform, we can write the sparse expression of
𝑆ff for a non-homogenous base flow within the Floquet frame-
work,

Sff =

∫
𝑉

˜̂Q𝐻 W̃Q̂dV,

=

∫
𝑉

˜̂Q𝐻
(
W̃∗ ˜̂Q

)
dV, (7)

with (∗) the convolution operator in the transformed direc-
tion. Using Eq. 7, we obtain a physically meaningful for-
mulation of Sff now in the frequency-wavenumber domain for
non-homogeneous base flows. In the initial formulation of
Rigas et al. (2019), the database is first Fourier transformed
in 𝑧 to filter only the relevant spanwise modes, then Fourier
transformed back in space to perform the SPOD in the physical
domain. Our formulation allows us to take full advantage of
the Floquet decomposition of 𝑞𝑞𝑞′ by using only a few relevant
wavenumbers and keeping the SPOD analysis in wavenumber
domain with significant computational savings. Finally, Eq. 7
leads to a cost reduction by a factor 𝐿 to the SPOD computa-
tion.

LDNS spectra at x=350
Using the framework developed above, we compute the

SPOD of 𝑞𝑞𝑞′ for the LDNS at 𝑥 = 350. We give in Fig. 4 an
overview of the energy spectrum of the first eigenvalue 𝜎0 of
the SPOD along with identified eigenfunctions in Fig. 5, the
notations are defined below. A white noise forcing of iden-
tical amplitude for all streak cases was used. By looking at
the black markers, summing all Floquet components in the z-
direction, we notice at first sight a strong increase in the ampli-
tude levels reached by the most amplified instabilities as 𝐴𝑠𝑢
increases, showing how increasing the streak amplitude con-
siderably amplify the linear growth mechanisms. Additionally,
we notice a separation between low-frequency ( 𝑓 ≈ 0.1) and
high-frequency modes ( 𝑓 > 0.22). Using the 2D-LST results
mentioned above, we identified the modes at 𝑓 = 0.1 to belong
to the first mode family (FM) and streak-modes family (SM),
whereas the modes at 𝑓 > 0.22 were identified to belong to the
second Mack-mode family (MM). Specifically, for the high-
frequency content, we notice the progressive separation of the
high-frequency peak in the A1 case into two peaks of frequen-
cies 𝑓 ≈ 0.25 and 𝑓 ≈ 0.32 for cases A2 & A3. This frequency
separation has not been observed before and reveals two sub-
families of the Mack mode, which we shall describe later as
being symmetric/varicose (MM𝑠) and anti-symmetric/sinuous
(MM𝑎) Mack modes. To further help the detailed interpre-
tation of these spectra in what follows, we make use of the
convention (•)𝑘 for modes of wavelength 𝜆 = 𝑘𝜆𝑆 . E.g. MM2

𝑠

is the subharmonic sinuous second Mack-Mode as depicted in
Fig. 5e.

Whereas for the A1 case, the low and high-frequency
peaks are of a similar order of magnitude, with increasing
streak amplitude (case A2 & A3), the low-frequency mode
dominates: increasing the streak amplitude thus enhances the
linear growth mechanism associated with the first mode. The
strong amplification of the low-frequency content contrasts
with the PSE results of Paredes et al. (2019) at similar values
of Mach number and streak amplitude, where the introduced
Mack mode was found to dominate. This difference underlines
the importance of accounting for the receptivity process in the
analysis of the transition on such distorted boundary layers.

Going further in the interpretation of the LDNS spectra,
we look at the coloured lines of Fig. 4 representing the Floquet
decomposition of the SPOD energy spectrum of the full span-
wise base depicted in black, using Eq. 7. The blue, green and
red curves give the frequency energy spectrum of respectively,
harmonic (𝜆 = 𝜆𝑆), subharmonic (𝜆 = 2𝜆𝑆) and four-streaks
modes (𝜆 = 4𝜆𝑆). Each energy peak of the coloured curves
has been identified as an independent 2D-LST mode. This de-
composition highlights a rich modal content for the streaky-
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Figure 5: Comparison of LST-2D (left) and SPOD (right)
eigenfunctions at 𝑥 = 350. Normalised contours of the
real part of the axial velocity disturbance. Modes shape
for A2 are not shown as they are the continuation of A1.
(a) : A1 𝑓 = 0.08,FM2

𝑎 ; (b) : A1 𝑓 = 0.26,MM1
𝑠 ; (c) :

A3 𝑓 = 0.09,SM1
𝑎 ; (d) : A3 𝑓 = 0.26,MM2

𝑠 ; (e) : A3
𝑓 = 0.33,MM2

𝑎

boundary layers.
The modes FM2

𝑎 at 𝑓 = 0.08 (Fig. 5a) and MM1
𝑠 (Fig.

5b) drive the dynamics of case A1. As the streak amplitude
increases, for case A2, the low-frequency mode FM2

𝑎 becomes
dominant. Concurrently, we note in Fig. 4 a decrease of 70%
in the amplitude of the mode MM1

𝑠 , suggesting a stabilizing
effect also noted in Paredes et al. (2019). We also note the
emergence of the secondary peak at 𝑓 = 0.33 for the subhar-
monic component MM2

𝑎 (Fig. 5e). Finally, for case A3, the
low-frequency mode that has here become dominant switches
to a harmonic spanwise periodicity (SM1

𝑎) (Fig. 5c). Concur-
rently, the decaying harmonic Mack mode switches to a sub-
harmonic Mack mode (MM2

𝑠) (Fig. 5d), strongly amplified
compared to cases A1 & A2. This amplification suggests now
a destabilising effect of the high amplitude streaks.

Non-linear dynamics
Having assessed the most amplified instabilities originat-

ing from the white noise forcing. We compare and track these
identified modes in the non-linear simulation. Using Eq. 7,
the growth of the main modes retained from Fig. 4 can be
followed in Fig. 6 for cases A1, A2 & A3. For further com-
parison, we also compute the LDNS of the white noise forcing
of a Blasius boundary layer, i.e. without streaks, at exactly the
same flow conditions. We add the most amplified first mode
and Mack mode issued from this non-streaky LDNS to the fig-
ures to quantify the streaks effect. Hence Fig. 6 contains the
DNS and LDNS results for streaky base flows with respec-
tively thick and dashed lines, and it also contains LDNS re-
sults for the non-streaky base flow, shown as thin dotted lines
with markers. As cases A1 & A2 follow a similar trend, with
increased dominance of FM2

𝑎 , the A3 case reveals more intri-
cate non-linear dynamics requiring the tracking of additional
modes.

The DNS of case A1 does not reach turbulence by the end

of the domain. Both amplified DNS modes follow the ampli-
fication rate of their LDNS counterpart, especially the MM1

𝑠

mode closely follows the LDNS up to 𝑥 > 200. We can no-
tice that the receptivity in the non-linear regime shows a slight
discrepancy with a delayed growth of the low-frequency mode
with respect to the LDNS. Suggesting that some non-linear
receptivity mechanism might be at play. Comparing these ob-
servations to the non-streaky LDNS, we note an overall delay-
ing effect of the streaks on the linear receptivity and growth
of these unstable modes. We also remark, as noted by Pare-
des et al. (2019), a reduction in the Mack mode amplification
rate, confirming the stabilising effect at this low streak ampli-
tude of 𝐴𝑠𝑢 ≈ 0.1. On the other hand, the first mode shows an
increased amplification.

The dynamics of case A2 are driven by the FM2
𝑎 mode

on the second half of the domain. This mode has a strong
amplification rate compared to the non-streaky case, show-
ing increased instability. On the other hand, the Mack-mode
MM1

𝑠 shows a fast initial growth, followed by a stabilisation. A
second interesting feature is a discrepancy between the initial
growth of the DNS and LDNS Mack modes. The former starts
to grow strongly around 𝑥 = 80 where the LDNS mode am-
plification shows a considerable delay. This early non-linear
growth suggests the presence of a non-linear receptivity mech-
anism for the MM1

𝑠 mode. Furthermore, after the strong initial
growth, the Mack mode observes a damping resulting in an
amplitude decay from 𝑥 = 150. Although delayed, similar be-
haviour is observed for the LDNS. Then, the MM1

𝑠 from the
DNS shows an almost constant growth rate. Its LDNS coun-
terpart shows a stronger growth at 𝑥 = 200 up to 𝑥 = 280 where
its starts getting damped again. This discrepancy could be ex-
plained by the non-linear base-flow modification due to the
varicose motion observable in Fig. 3 at 𝑥 ≈ 280, supporting
the instability of the DNS MM1

𝑠 mode

Finally, we investigate the transitional scenario of case
A3. At first sight, the non-linear dynamics seem to be driven
by two low-frequency modes, which are the subharmonic FM2

𝑎

and the harmonic SM1
𝑎 modes. This latter mode is noted as a

streak mode because it hase be identified to unstable only for
higher streak amplitude by 2D-LST. The FM2

𝑎 mode has an
early receptivity and a constant growth throughout the domain,
while the SM1

𝑎 mode starts being linearly unstable only after
𝑥 = 120 but quickly outgrows the FM2

𝑎 mode as the streaks
amplitude increases. From this spectrum, it seems that both
modes leads to the onset of turbulence around 𝑥 = 300. How-
ever, looking at Fig. 3 we observe an harmonic sinuous mo-
tion related to mode SM1

𝑎 symmetry, favouring the hypothesis
of the final stages of transition being dominated by the strong
growth of this latter mode for this specific case. Although, this
result does not rule out the possibility of a transition driven
by the earlier amplification of the subharmonic instability in
a noisier environment. As for the high-frequency content, we
now observe the strong amplification of the MM2

𝑠 mode. This
amplification exceeds the Mack modes growths of cases A1 &
A2, suggesting an increased instability of the Mack modes for
large streaks amplitude.

These combined observations for all three cases reveal the
strong effect of the streaks distortion on the boundary layer re-
ceptivity and stability. The main result here is the effect of the
streaks on the Mack-mode receptivity and the first mode am-
plification. It shows that even for low streaks amplitude, the
dominance of the second Mack mode observed for the Blasius
case is no longer verified. Furthermore, these results suggest
that the family of the low-frequency modes is actually domi-
nant at 𝑀∞ = 6.0 for all the observed streaks amplitude here.
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Figure 6: Non linear evolution of the main SPOD modes energy (full), compared to the rescaled LDNS dynamics (dotted).

Conclusion
In this study, we have investigated the effects of steady

streaks on the boundary layer receptivity, stability and transi-
tion. In order to get a further understanding of these effects, we
devised a DNS framework to study the linear and non-linear
dynamics of disturbances triggered by white noise. We ap-
ply this forcing on three steady base flows consisting of grow-
ing optimal streaks of three different amplitudes spanning pre-
viously studied amplitudes from the PSE analysis of Paredes
et al. (2019) at a similar Mach number.

To decompose the dynamics in time and space, we devel-
oped an SPOD formulation using Floquet theory, which allows
us to split the growing modes into different families according
to their periodicity with respect to the streaks. This method al-
lows us to capture the emergence of a larger number of distinct
modes in the streaky flow compared to the Blasius boundary
layer. By comparing the linear growth of these modes to pre-
vious linear analyses, we highlight the role of the forcing and
receptivity in the evolution of the modes. We show a strong
amplification and dominance of low-frequency modes for all
streak amplitude considered in contrast with the previous PSE
results.

Going further in the analysis by tracking the non-linear
evolution of the most amplified modes, the DNS shows the var-
ious effects of the streaks on the mode receptivity and growth
compared to the streaky-linear and the non-streaky, Blasius
boundary layers. In short, the Mack modes are mainly damped
by the streaks and their receptivity is also affected. Also,
the low-frequency modes of subharmonic spanwise periodicity
dominate at low amplitude, whereas the strong amplification
of the harmonic component is leading to turbulence at high
amplitude. This set of results serves as a first estimation of
natural transition dynamics in a streaky boundary layer. Fi-
nally, this study underlines the sensitivity of the receptivity,
modal growth and non-linear stages of transition process to
slight changes in the boundary layer topology. Further analysis
will now be necessary to understand which underlying physi-
cal mechanisms drive these changes in the flow dynamics.
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