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ABSTRACT
We study the laminar-to-turbulent boundary layer transi-

tion of converging-diverging sonic nozzles used as standard
flow meters. Stability characteristics are addressed using the
linear stability framework under the parallel flow assumption.
We show that the boundary layer is stable to modal distur-
bances but can experience transient-growth of energy in the
form of streaks of high and low velocity. The peak of energy
associated to transient-growth is expected to happen within the
throat region of the nozzle.

Transition trends are investigated using N factors. A
higher acceleration associated with a small inlet radius tends
to stabilise the non-modal mechanism. Freestream turbulence
and surface roughness are discussed as possible receptivity
mechanisms for transient-growth to occur. It is shown that
roughness is unlikely to trigger the transition process.

INTRODUCTION
This work is motivated by boundary layer transition that

occurs in converging-diverging sonic nozzles used in industrial
applications as flow meters. The boundary layer displacement
thickness at the nozzle throat influences the mass flow rate
by reducing the effective sonic area. In standard discharge-
coefficient models used to calibrate flow meters, laminar and
turbulent boundary layer models were established for a set of
nozzle shapes by Stratford (1964) and Geropp (1971). How-
ever, there is little information about the transitional regime,
introducing uncertainty about the validity range of these mod-
els.

A common approach to study boundary layer transition is
based on modal growth of infinitesimal disturbances on a lin-
earised base flow. The boundary layer in the converging sec-
tion of the nozzle ranges from subsonic to transonic. For a flat
plate in a transonic regime, modal transition is characterized
by a Tollmiens-Schlichting (T.S.) wave that is most unstable
for plane 2D wave (Mack (1984) and Özgen & Kircali (2008)).
However, a favourable pressure gradient is known to have
a stabilizing effect on this mode Masad & Zurigat (1994)).
Boundary layers are also subject to transient growth (Han-
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Figure 1. Sketch of the nozzle geometry under investigation

ifi et al. (1996), Tumin & Reshotko (2001)), where stream-
wise vortices result in the formation of streaks of high and low
streamwise velocity via the lift-up.

We investigate the stability characteristics of boundary
layers in nozzles with an arc-circle throat shown in Figure
1, similar to those used as references in high-pressure mass
flow rate applications. We first present the model used to ob-
tain boundary layers for such flows that will be used as base
flow. We investigate the spatial modal stability using the lin-
ear stability analysis framework for a compressible boundary
layer. Then, we study non-modal mechanisms through tran-
sient growth analysis. N factors are computed and compared
with literature data. The analysis is extended to other nozzle
geometries by varying the ratio R/D. Finally, the roughness-
induced transition is discussed based on the numerical simula-
tion database of Bernardini et al. (2014) and through measure-
ments of an analogous surface.

BASE FLOW
The boundary layer is modelled using the analytic solu-

tion proposed by Geropp (1971). The model is based on the
compressible boundary layer equations with pressure gradient
and an adiabatic wall. The equations are simplified by intro-
ducing the Prandtl number of unity and by using a linear rela-
tion between viscosity and temperature instead of the classical
Sutherland’s formula. The equations are worked out by in-
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troducing self-similar velocity profiles that can be set for any
given nozzle geometry by evaluating the streamwise pressure
gradient at the nozzle throat. At the nozzle throat, the bound-
ary layer equation is
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where y is the wall normal position for a given value of ve-
locity u/uδ , where the value of u/uδ ∈ [0,1], R0 = a0D/ν0
is a stagnation-based Reynolds number with a0 the stagnation
speed of sound, D the nozzle throat diameter, ν0 the kinematic
viscosity at rest, M the Mach number, γ is the isentropic ex-
ponent and the subscript δ denotes the value at the boundary
layer edge. The acceleration parameter m is here chosen so
that it has the same pressure gradient at the throat as a nozzle
with an arc-circle throat
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where R is the radius of the nozzle profile at the throat. In
Equation 1, the boundary layer scales with the Reynolds num-
ber R0 and the acceleration parameter m. As a result, the ve-
locity profile shown in Figure 2 is self-similar and holds for
any ratio R/D. In order to facilitate comparison with available
data in the literature, we will use a Reynolds number based on
the nozzle throat diameter

Ret =
ρδ uδ D

µ0
, (3)

where µ0 is the stagnation viscosity.
In the following, unless otherwise specified, the nozzle is

chosen with a ratio R/D = 2, corresponding to the most com-
monly used nozzle geometry for mass flow measurement dis-
cussed in the introduction. The throat Reynolds number is set
at Ret = 106, corresponding to conditions where the transition
is commonly observed.

STABILITY ANALYSIS
To perform the stability investigation, the compressible

Navier-Stokes (N.-S.) equations are linearised by introduc-
ing the decomposition q = q̄ + q′, where the state vector
q = [ρ,u,v,w,T ]> contains the density, the 3 velocity compo-
nents and the temperature, q′ is the state vector of fluctuating
quantities and q̄ the base state. Under the small perturbation
assumption, the linearised N.-S. equations are obtained

∂

∂ t
q′ = Lq′. (4)

Figure 2. Boundary layer velocity profile in nozzle. Compar-
ison between Geropp self-similar model and Blasius flat plate
solution.

The linearised N.-S. operator L is further simplified by
considering a locally parallel baseflow where the wall-normal
direction is inhomogenous

q̄(x,y,z, t) = q̄(y), (5)

The density and temperature are made non-dimensional
by their reference values at the boundary layer edge δ and the
velocities by the speed of sound outside the boundary layer
cδ . The reference length is the boundary layer displacement
thickness δ ∗. The corresponding Reynolds number is

Reδ ∗ =
ρ̄δ ūδ δ ∗

µ̄δ

(6)

For a nozzle with R/D = 2 at Ret = 106, the computed
displacement thickness-based Reynolds number is Reδ ∗ =
1057.

Spatial modal stability
The spatial modal stability of the boundary layer is

adressed by considering the normal-mode ansatz

q′(x,y,z, t) = q̂(y)ei(αx+β z−ωt), (7)

where α and β are the streamwise and spanwise wavenumbers
and ω the frequency. In matrix form, the perturbation equation
is

−iωq̂ =
[
A0(β )+Ax(β )α +Axxα

2
]

q̂. (8)

with α ∈ C, β ∈ R and ω ∈ R. The matrices A0, Ax and Axx
are the constant coefficients of the linearised N.-S. equations.
The polynomial eigenvalue problem in Equation 8 is solved
for prescribed values of β and ω . Only the downstream-
propagating modes are retained by applying the Briggs-Bers
criterion (Briggs (1964) and Bers (1983)). The stability of the
resulting eigenvalues α is given by Equation 7.

The eigenvalue problem is solved for pairs of wavenum-
bers varying from β = [0,3] and ω = [0,3]. Figure 3 presents
a map of minimum imaginary part over all eigenvalues found
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Figure 3. Map of Imaginary part of α at Re∗
δ
= 1057.

for each computed pair of [β ,ω], where acoustic modes have
been filterd out. For each pair of wavenumbers we have that
min(ℑ(α)) > 0. Since we have only kept the downstream-
travelling modes, it shows that the flow is modally stable.
In flows without pressure gradient, the Tollmien-Schlichting
wave is unstable. In the present case, it is stabilised by the
favorable pressure gradient, as illustrated in Figure 4.

Figure 4. Spatial eigenspectrums for β = 0, ω = 0.1 and
Reδ ∗ = 1057. Comparison of Blasius B.L. without pressure
gradient and the current nozzle B.L. with favorable pressure
gradient.

This has been repeated for higher Reynolds numbers (up
to Ret = 107) and the same conclusions have been drawn. We
therefore conclude that the boundary layer in the choked re-
gion of the nozzle considered is modally stable, and transition
must therefore be underpinned by non-modal mechanisms.

Spatial non-modal growth
Despite a stable modal behavior, transient-growth occurs

due to the non-orthogonality of the linear operator L. If small
perturbations experience enough growth before decaying, they
may either affect the base flow q̄ in a new modally unstable
state or trigger nonlinear terms leading to turbulence.

The transient-growth analysis is performed by consider-
ing the normal-mode ansatz

q′(x,y,z, t) = q̂(x,y)ei(β z−ωt), (9)

and the resulting perturbation equation

−iωq̂ = L q̂ =

[
A0(β )+A1(β )

∂

∂x
+A2

∂ 2

∂x2

]
q̂. (10)

The solution to Equation 10 is sought in the form

q̂(x,y) = q̂0(y)e
L x (11)

where q̂0(y) = q̂(y,x= 0) is an initial small pertubation vector.
The spatial growth of an initial perturbation is given by

G(x,β ,ω) =
‖q̂(x)‖2

E
‖q̂0‖2

E
. (12)

where G is the gain, defined as the energy norm of the pertur-
bation at a given x-location q̂(x) produced by an initial distur-
bance q̂0 over the energy norm of that same inital disturbance.
Following the work of Chu (1965), the energy norm is chosen
for the inner product 〈q,q〉E = qHWeq

We = Diag
(

T̄
ρ̄γ

, ρ̄, ρ̄, ρ̄,
ρ̄

T̄ γ(γ−1)

)
. (13)

Equation 12 is solved using optimal perturbations by per-
forming the singular value decomposition of the matrix eL x

after application of the energy norm. The detailed method to
obtain the gain can be found in Jordan et al. (2017).

Spatial non-modal growth is computed for ω ∈ [0,0.5]
and β ∈ [0,2.5] for a total of 2500 pairs. The highest gain
achieved over distance

Gmax(ω,β ) = max
x

G(ω,β ,x). (14)

is presented on Figure 5. It is shown that significant transient-

Figure 5. Gmax map at Re∗
δ
= 1057.

growth occurs for ω = 0, corresponding to an optimal pertur-
bation made of streamwise vortices leading to steady streaks of
high and low velocity. The highest gain is acheived at β ∼ 0.61
and ω = 0. In general, high gains are confined at low frequen-
cies ω and spanwise wavenumbers β ∈ [0.4−1].
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TRANSITION CHARACTERISTIC
The gain is found to scale with the Reynolds number as

well as the spatial length of development, as mentionned in the
calculation of Tumin & Reshotko (2001). In the case of the
nozzle boundary layer, it is found that the dimensional length
of development x∗ scales with the throat diameter. The ratio
R/D also modifies the boundary layer displacement thickness
at the nozzle throat, therefore the length of streaks develop-
ment is also affected by this ratio. Gains are presented in Fig-
ure 6 for various R/D. The highest gain are achieved at the
optimal distance x∗opt between 0.4D and 0.9D, depending on
R/D, for ω = 0 and β = 0.61.
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Figure 6. Spatial Gain G(ω = 0,β = 0.61) scaled with
Reynolds number. The distance is expressed in throat diam-
eter, x∗/D and is independent of Reynolds number.

These optimal lengths indicates that the peak of energy
will occur in the throat region. This makes the non-modal spa-
tial growth a plausible candidate to explain the transition in
these accelerated transonic flows.

N factors
The relations found between the gain, the Reynolds num-

ber and R/D allow to compute N factors

N = ln(Gmax) (15)

to predict the trend of transition in a parametric study. The N
factor is a parameter used to correlate the turbulence intensity
of the freestream flow to the transition. It is commonly ap-
plied to the exponential growth of unstable mode on flat plate
boundary layers. Since the present model is based on non-
modal growth, the N factor cannot be directly compared with
flat plate boundary layers. However, the N factors can be pre-
sented alongside experimental discharge coefficients obtained
for the same nozzle geometry. We base the reference point
on the experiments carried by Ishibashi (2015), in which the
discharge coefficient is measured for a nozzle of R/D = 2. In
Figure 7, it is compared the discharge coefficient obtained by
Ishibashi from experimental data and the N factor computed
by the present method for the same nozzle. As the Reynolds
number increases, the discharge coefficient approaches unity
as a result of a thinner boundary layer at the nozzle throat.

10
5

10
6

10
7

0.986

0.988

0.99

0.992

0.994

0.996

4

5

6

7

8

9

Figure 7. Discharge coefficient (Cd): black curve (left axis)
and N factor: orange curve (right axis) as function of throat
based Reynolds number Ret . The discharge coefficient is a fit
of experimental data for a nozzle of R/D = 2 (see Ishibashi
(2015)).

From Ret = 105 to Ret = 106, the boundary layer is laminar.
The drop in discharge coefficient, attributed to transition, is
progressive over the range Ret = [1 ·106−2 ·106]. It then in-
creases again in the turbulent regime Ret > 2 ·106. The N fac-
tor associated to this nozzle is continuoulsy increasing from
N = 4.3 at Ret = 105 to N = 9 at Ret = 107. In this compari-
son, the transition has occurred at N ≈ 7.

The N factor calculation is repeated for other R/D and
presented in Figure 8. At a given Reynolds number, the N
factor increases with R/D as a result of a thicker boundary
layer at the nozzle throat.
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Figure 8. N factor as a fonction of Ret for various nozzle
ratio R/D

In a scenario where the transition occurs at a fixed N fac-
tor, the lower R/D, the higher the transition Reynolds number
will be. The higher acceleration associated with smaller R/D
tends to stabilise the non-modal mechanism. This trend is in
accordance with the experiments of Ishibashi (2015), where
the higher R/D showed an earlier transition.
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THE DISTURBANCES ORIGINS
The spatial transient-growth analysis is based on the op-

timal disturbance theory, where we have selected the optimal
perturbation in order to maximize energy growth. An insight
into the possible origins of disturbances is necessary to com-
plete the analysis. There are two main candidates: the first is
freestream forcing due to the turbulence that naturally occurs
in any flow. The second is wall roughness, where distributed
or isolated roughness elements can introduce disturbances in
their wake.

Freestream disturbances
Among the experiments conducted by Ishibashi (2015),

the discharge coefficients of two nozzles of the same geome-
try were compared using two different configurations. In the
first, the standard shape of Figure 1 was used. In the second,
an obstacle is introduced upstream of the nozzle, as shown in
Figure 9
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Figure 9. Nozzle with obstacle

The nozzles were mirror polished to eliminate roughness
effects on transition. The transition Reynolds number was
lower when the obstacle was introduced. Although no quan-
titative measurements were carried out, the earlier transition
was suggested to be related to upstream conditions, such as
geometry and disturbances. We can further add that the mod-
ifications made on the tested nozzles do not modify the lami-
nar boundary layer profile, as the discharge coefficient in the
laminar regime remained unaffected by the changes in geom-
etry. The present analysis suggests that the modified geome-
try introduces disturbances into the boundary layer. Since the
base flow is believed to be the same for both nozzles, the tran-
sition mechanism we discuss in this paper is consistent with
the hypothesis of Ishibashi. This also suggests that the turbu-
lence intensity of the incoming flow may influence the transi-
tion Reynolds number, despite the strongly favorable pressure
gradient in the converging section of the nozzle. This is of
importance because this is currently not considered when per-
forming mass flow rate measurement on different facilities that
may have different incoming turbulence levels.

Disturbance from isolated roughness
Wall roughness is known to cause transition to turbulence

provided it is sufficiently large compared to the thickness of
the boundary layer. In a numerical investigation, Bernardini
et al. (2014) performed a parametric study of boundary layer
transition induced by an isolated roughness element. They var-
ied the shape, the height, the Reynolds number, and the Mach
number and found that a Reynolds number Re2k based on the
height of the roughness elements k, the velocity uk and density

Figure 10. Evolution of the roughness based Reynolds num-
ber Re2k as a function of roughness height k/D. The shaded
area represents the expected critical Re2k above which the
wake behind the roughness element becomes turbulent. Dif-
ferent curves are for different flow conditions Ret .

ρk evaluated in the undisturbed boundary layer at the height k
and the viscosity evaluated at wall µk

Re2k =
ρkukk

µk
(16)

is convenient to describe the critical roughness height that will
cause transition to turbulence. Depending on the roughness
shape, the wake introduced behind the obstacle would break-
down to turbulence if Re2k > [400− 700]. Using the analyti-
cal formulation of the boundary layer profile we consider, it is
possible to calculate this Reynolds number as a function of the
roughness height, and thus to determine the critical roughness
height as a function of Ret .

Figure 10 presents Re2k at the nozzle throat as a func-
tion of roughness height for five Ret . We note that at con-
stant Re2k, as Ret is increased, the critical roughness height
decreases as a result of a thinner boundary layer. In the
range where Ishibashi (2015) observed transition, that is Ret =
[1 · 106− 2 · 106], the computed critical roughness height lies
somewhere in the range k/D ' [0.5− 1] · 10−3, which corre-
spond to k' [1−2] ·10−5m when scaled by the nozzle diame-
ter used in the experiments. These values of roughness height
are incompatible with the polished surface used. They corre-
spond to the surface quality obtained via sanding with rough
sandpaper. When standard polishing techniques are applied,
the expected height of the peaks of roughness is of the order
of k' 1 ·10−7 m, two orders of magnitude below the minimal
transition height estimated. Hence, in that case, it is thought
that roughness-induced transition is not the dominant mecha-
nism.

Standard nozzles for mass flow rate measurement are re-
quired to have a maximum surface roughness proportional to
the throat diameter to reduce effects on the discharge coeffi-
cient. This requirement is set at Ra < 15 ·10−6×D, where Ra
is the arithmetical mean deviation of the roughness profile z

Ra =
1
l

∫ l

0
|z|dx (17)
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Figure 11. Flow field of the optimal initial disturbance. The
dashed line is the boundary layer thickness δ , the black line is
the measured wall roughness. Ret = 1.75 ·106.

over the length l considered. To ensure that the current analysis
is also valid in standard cases and not only applies to mirror-
polished nozzles, we perform a roughness study. A piece of
aluminum is sanded to meet the roughness required by the
norm. The surface roughness is characterized using a Taly-
surf 6000 CCI (Coherence correlation interferometry) with a
wall-normal resolution of 0.01nm.

The roughness obtained is Ra = 15 ·10−6×D, effectively
meeting the requirement. A roughness profile is extracted and
compared to an optimal disturbance in Figure 11. It shows
that the roughness height is orders of magnitude smaller than
the boundary layer thickness and the optimal disturbance. The
periodicity of the optimal disturbance is also much larger than
that of the roughness profile. The scale separation further in-
dicates that roughness is not the underpinning factor for tran-
sition in these configurations.

CONCLUSION
We have used an analytical boundary layer formulation to

investigate the transition observed within the throat section of
a converging-diverging nozzle. In the locally parallel frame-
work, the stability analysis reveals that transition is not related
to a modal mechanism. The T.S. mode is stabilised by the
favorable pressure gradient, and no unstable mode is found
for nozzle baseflow. Transient-growth analysis shows that sig-
nificant energy amplification is likely to occur via the lift-up
mechanism, which would result in streamwise streaks of low
and high speed.

The spatial transient-growth analysis is performed in a
parabolized formulation in which upstream-traveling modes
are removed. While the gain is proportional to Re2

δ ∗ , the spatial
length at which the maximum gain is achieved is found to scale
with the throat diameter. This finding is an important result as
it indicates that transient-growth is compatible with the geom-
etry, the spatial length for maximum energy growth being of
the order of the nozzle diameter. The optimal gain formulation
was used to compute N factors for various nozzle geometries.
Comparison with experimental data suggests that non-modal

transition occurs at values of N = 7, which is lower than the
value typically associated with a modal transition. The anal-
ysis shows that a smaller inlet in the convergent section will
result in delayed transition, indicating that stronger accelera-
tion attenuates non-modal growth mechanisms.

Experimental investigations in the literature have shown
that the transition Reynolds number is sensitive to the distur-
bances injected upstream of the nozzle throat. The current
study suggests that the incoming disturbances are amplified via
the lift-up mechanism. We have provided an analysis of the
potential of isolated roughness-induced transition and shown
that it is unlikely to occur for nozzles with surface finish re-
quired in industrial configurations. Moreover, the analysis of a
sanded surface shows that the surface roughness height distri-
bution is out of scale compared to optimal disturbances. This
confirms and strengthens the hypothesis that roughness is not
the underpinning factor for transition in these configurations.
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