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Abstract
Weighted compact nonlinear schemes (WCNSs) were

developed to improve the performance of compact high-
order nonlinear schemes (CNSs) by utilizing the weight-
ing technique originally designed for WENO schemes, and
non-oscillatory shock-capturing computation and high res-
olution in smooth flow field are both achieved. Extensive
efforts have been given focusing on improving the perfor-
mance of WCNSs ever since then. In this work, the ENO-
like stencil selection procedure of TENO schemes is intro-
duced for high-order nonlinear interpolations of midpoint
variables, targeting compact nonlinear schemes which ful-
ly abandon the oscillatory stencils crossing discontinuities
and eliminate numerical oscillations. The stencil selection
procedure also directly applies smooth stencils with their
optimal weights, ensuring that the optimal numerical accu-
racy is fully recovered in smooth flow field.

1 Introduction
While second-order accurate numerical methods a-

long with RANS simulations are frequently implemented
by commercial codes, and currently dominate most indus-
try related applications, high-order CFD schemes are still
expected candidates when much of the attention is given
on problems containing both discontinuities and complex
flow structures, such as shock-boundary layer interaction,
Rayleigh-Taylor instability, and particularly the numeri-
cal simulation of compressible turbulence flows. Howev-
er, high-resolution simulations of compressible flows con-
taining discontinuities are still challenging even for current
state-of-the-art numerical methods. Therefore, the develop-
ment of advanced high-order CFD schemes, targeting non-
oscillatory computation for shock-capturing and high-order
accuracy in smooth flow field, is still an active topic with
much to be done.

Compact finite difference schemes have displayed
spectral-like resolution Lele (1992), which are therefore
highly favored in the simulation of flow problems involv-
ing multi-scales phenomena. Weighted Compact Nonlinear

Schemes (WCNSs) Deng & Zhang (2000) are a family of
high resolution nonlinear shock-capturing schemes devel-
oped based on the key concept of nonlinear weighting tech-
nique and cell-centered compact schemes. Past research has
been performed on WCNSs, notably by Nonomura et al.
(2010); Nonomura & Fujii (2013); Wong & Lele (2017),
demonstrating that WCNSs have several advantages over
the standard finite-difference Weighted Essentially Non-
oscillatory (WENO) schemes Liu et al. (1994): (1) the res-
olution is slightly higher; (2) the choice of flux schemes is
more flexible, including Roe scheme Roe (1981), van Leer
scheme van Leer (1982), and AUSM scheme Liou (1993);
and (3) WCNS performs well on freestream and vortex p-
reservation properties on wavy grids.

The classical WCNS procedure consists of three step-
s Deng & Zhang (2000): (1) the node-to-midpoint weighted
nonlinear interpolation of flow variables, (2) the evaluation
of fluxes at midpoints, and (3) midpoint-to-node central flux
differencing. The flux differencing in the third step can be
performed by using compact schemes or explicit schemes.
Despite that a compact scheme is used by the classical WC-
NS, later work of Deng et al. (2005) suggested that for a
fourth or fifth-order WCNS, the weighted nonlinear inter-
polation in step (1) dominates the resolution property, and
explicit central differencing scheme is recommended due
to its simplicity of implementation and superior computa-
tion efficiency. Further work of Nonomura & Fujii (2009)
demonstrated that the type of flux differencing does not sig-
nificantly change the resolution, even for higher-order WC-
NSs. The classical WCNS uses the strategy by Jiang & Shu
(1996), and is therefore referred to as WCNS-JS.

Recently, a family of high-order targeted ENO
schemes has been proposed by Fu et al. (2016). One of the
essential feature of the TENO scheme is the use of ENO-
type stencil selection procedure. Instead of merely focus-
ing on developing improved nonlinear weights, the sten-
cil selection technique is incorporated in WCNS, and the
so-called fifth-order TCNS is developed in this work. In
Section 2 we specifically discuss numerical methods being
used. Numerical results of canonical test cases, as well as
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the corresponding discussion, are given in section 3. Final-
ly, concluding remarks are given in the last section.

2 Numerical methods
Without loss of generality, the one-dimensional scalar

hyperbolic conservation law

∂u
∂ t

+
∂ f (u)

∂x
= 0, (1)

which is subject to the initial condition

u(x,0) = u0(x), (2)

is used to explain the numerical methods which are eventu-
ally implemented to solve the governing equations of com-
pressible flows.

The spatial discretization of Eq. (1) is performed on
an equally spaced one-dimensional mesh. The distance be-
tween two adjacent grid nodes is h. An ordinary differential
equation (ODE) system is obtained

dui

dt
=−∂ f

∂x
|x=xi =− f ′i , i = 1, · · · ,n. (3)

As mentioned above, the first-order derivative of the
flux function, i.e. f ′i , can be approximated by using implicit
or explicit central differencing schemes. Here, an explic-
it midpoint-to-node central differencing scheme is used to
calculate the flux derivatives at grid nodes, given by

f ′i =
75
64h

( f̂i+ 1
2
− f̂i− 1

2
)− 25

384h
( f̂i+ 3

2
− f̂i− 3

2
)+

3
640h

( f̂i+ 5
2
− f̂i− 5

2
).

(4)
Midpoint flux terms in Eq.(4) are unknown and can be

evaluated using numerical upwind flux functions. The s-
calar upwind flux function can be written in a generic form

f̂i± 1
2
=

1
2

[(
f (uR,i± 1

2
)+ f (uL,i± 1

2
)
)
−|â|

(
uR,i± 1

2
−uL,i± 1

2

)]
,

(5)
where the subscripts, L and R, respectively indicate the vari-
ables on the left and right hand side of midpoint xi± 1

2
, and

â is the approximate eigenvalue.

2.1 High-order nonlinear interpolation of
midpoint variables

Following the work of WCNS, the high-order nonlin-
ear interpolation procedure is applied on the midpoint flow
variable uL/R,i± 1

2
. For the purpose of simplicity, we only

focus on the evaluation of variable on the left hand side of
xi+ 1

2
, i.e., uL,i+ 1

2
, in the following work. The evaluation of

uR,i+ 1
2

can be performed straightforwardly by using a sym-
metrical form of uL,i+ 1

2
.

The fifth-order accurate linear approximation of the
midpoint variable uL,i+ 1

2
takes the form of

uL,i+ 1
2
= ui+

1
128

(3ui−2 −20ui−1 −38ui +60ui+1 −5ui+2) ,

(6)

which is constructed by employing a five-point full stencil
Si+ 1

2
= {xi−2,xi−1,xi,xi+1,xi+2}.
Eq. (6), however, can be equivalently represented by

combining three third-order polynomials each constructed
on the following three-point substencil

Si+ 1
2 ,k

= {xi+k−2,xi+k−1,xi+k}, k = 0,1,2, (7)

which is shown in Fig. 1.

Figure 1. Stencils for the fifth-order interpolation

Each of the third-order polynomials can be expressed
in a generic form using the (approximated) n−th derivatives
(n = 1,2)

uL,i+ 1
2 ,k

= ui (xi +∆x) = ui +u(1)i,k ∆x+u(2)i,k
∆x2

2
, (8)

where ∆x = xi+ 1
2
− xi =

h
2 . The first- and second-order

derivatives are respectively given by

u(1)i,0 =
1
2h

(ui−2 −4ui−1 +3ui),

u(1)i,1 =
1
2h

(ui+1 −ui−1),

u(1)i,2 =
1
2h

(−3ui +4ui+1 −ui+2),

(9)

and

u(2)i,0 =
1
h2 (ui−2 −2ui−1 +ui),

u(2)i,1 =
1
h2 (ui−1 −2ui +ui+1),

u(2)i,2 =
1
h2 (ui −2ui+1 +ui+2).

(10)

The linear optimal scheme is then represented by

uL,i+ 1
2
=

2

∑
k=0

dkuL,i+ 1
2 ,k

, (11)

where the optimal linear weights are

d0 =
1
16

, d1 =
10
16

, d2 =
5
16

. (12)
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Nonlinear weights are used to take the place of opti-
mal linear weights in order to alleviate non-physical oscilla-
tions when candidate substencils cross discontinuities. For
instance, the nonlinear weights of Jiang & Shu (1996) are
given by

ωk =
αk

∑2
k=0 αk

, αk =
dk

(βk + ε)2 , (13)

where the small parameter ε = 10−6 is used to prevent divi-
sion by zero, and βk is the local smoothness indicator in the
form of

βk =
(

hu(1)i,k

)2
+
(

h2u(2)i,k

)2
. (14)

It can be readily found that the corresponding JS weight can
adaptively approach 0 for a candidate substencil crossed by
discontinuities, diminishing possible numerical oscillation-
s, and continuously approximate the optimal linear weight
in smooth regions, therefore achieving high-order accuracy.

2.2 ENO-type stencil-selection
Instead of merely concentrating on improving nonlin-

ear weights, the ENO-like stencil-selection procedure Fu
et al. (2016) is introduced in this work as an essential com-
ponent of the presented method. In particular, the nonlinear
smoothness measurement yielding strong scale-separation
mechanism is given by

γk =

(
C+

τ5

βk + ε

)q
, k = 0,1,2, (15)

where τ5 = |β0 − β2| is the global smoothness indicator
which was originally proposed in the reference of Borges
et al. (2008), and the small threshold is given by ε = 10−40,
following that of WENO-Z scheme Borges et al. (2008) as
well. Constant C = 1 is set, and the integer power q = 6 is
used.

Instead of directly using the nonlinear smoothness
measurement of γk in Eq. (15), it is further normalized by

χk =
γk

∑2
k=0 γk

, (16)

which is then subject to a sharp cut-off function

δk =

{
0, if χk <CT ,

1, otherwise.
(17)

By introducing a parameter CT as the threshold of the
cut-off procedure, each candidate stencil can be attribut-
ed as “smooth” or “oscillatory”, such that those genuine-
ly oscillatory stencils are abandoned thereby, and only s-
mooth ones are used with their corresponding optimal linear
weights in the final interpolation. Observation of Eq. (17)
indicates that using a smaller CT tends to better recover the
underlying linear scheme, and yields better spectral proper-
ties.

Table 1. The coefficients of seven possible resulting poly-
nomials for the high-order nonlinear interpolation.

δ0,1,2 û∗
L,i+ 1

2 ,m
S∗

m am,i−2 am,i−1 am,i am,i+1 am,i+2

1,1,1 û∗
L,i+ 1

2 ,0
S∗

0 3/128 -5/32 45/64 15/32 -5/128

0,1,1 û∗
L,i+ 1

2 ,1
S∗

1 0 -1/12 5/8 1/2 -1/24

1,1,0 û∗
L,i+ 1

2 ,2
S∗

2 3/88 -5/22 75/88 15/44 0

0,0,1 û∗
L,i+ 1

2 ,3
S∗

3 0 0 3/8 3/4 -1/8

0,1,0 û∗
L,i+ 1

2 ,4
S∗

4 0 -1/8 3/4 3/8 0

1,0,0 û∗
L,i+ 1

2 ,5
S∗

5 3/8 -5/4 15/8 0 0

1,0,1 û∗
L,i+ 1

2 ,6
S∗

6 1/16 -5/24 5/8 5/8 -5/48

The resulting weight functions are finally given by

ω(T )
k =

dkδk

∑2
k=0 dkδk

, (18)

where the cut-off function δk in Eq. (17) is incorporated into
the weight evaluation to switch on/off each candidate sub-
stencil. Different from the continuously varying nonlinear
weight of JS in Eq. (13), the new weight in Eq. (18) in fact
belongs to a set of several numbers (this set has seven ele-
ments as will be shown in the following paragraphs), since
only two possible values of dkδk exist, viz., dk and 0.

After applying this weighting strategy along with the
cut-off procedure, the number of possible convex combina-
tions of candidate stencils is seven, represented in a generic
form

û∗L,i+ 1
2 ,m

=
i+2

∑
l=i−2

am,lul , (19)

where the coefficients are shown in Table 1. As a compari-
son, the number of possible convex combinations is infinite
when using the JS weight. Each combination of three sub-
stencils, as shown in Table 1, leads to a high-order interpo-
lation for the midpoint variables.

3 Numerical results and discussions
A variety of canonical problems are simulated to assess

the performance of the proposed fifth-order scheme TCN-
S, compared against WCNS-JS. One-dimensional linear ad-
vection equation and Euler equations of gas dynamics are
used as model equations. The ideal-gas equation of state is
given by p = (γ − 1)ρe with γ = 1.4 to close the Euler e-
quations. The node-to-midpoint interpolation is performed
on characteristic variables to alleviate spurious oscillation-
s Deng & Zhang (2000). The van leer scheme van Leer
(1982) is used for the computation of numerical fluxes. We
note that a CFL number equal to 0.6 has been used as default
for all numerical schemes and test cases reported herein.

3.1 Approximate dispersion relation
The ADR analysis introduced by Pirozzoli (2006) is

performed to evaluate the spectral properties of the numer-
ical schemes, and notes of Mao et al. (2015) are followed
to proceed the numerical procedure of ADR, e.g. the setup
of the time step size. As shown in Fig. 2(a) and 2(b), the
solutions obtained by the proposed TCNS agree well with
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the underlying linear scheme in low and intermediate wave-
numbers. A significant improvement can be found when
compared against the WCNS-JS in both dispersion and dis-
sipation properties. In addition, three numerical solutions
of varying threshold CT s for TCNS are also presented to
show the effect of threshold CT on dispersion and dissipa-
tion properties. Using small threshold CT delays the separa-
tion from the results of the underlying linear scheme, indi-
cating relatively superior spectral properties. However, the
threshold CT = 10−5 is used as a compromise of both de-
cent spectral properties and numerical robustness for shock-
capturing.

(a) Dispersion

(b) Dissipation

Figure 2. Approximated dispersion and dissipation prop-
erties of fifth-order schemes.

3.2 Linear advection problem
The Gaussian pulse advection problem in one-

dimension Yamaleev & Carpenter (2009) is used to assess
the numerical order of accuracy of the proposed scheme.
This problem is modeled by the linear advection equation,
with periodic boundary conditions and the initial conditions
given by

u(x,0) = e−300(x−xc)
2
, xc = 0.5. (20)

Time integration is performed up to t = 1, which corre-
sponds to one period of the single wave propagation in time.
A set of evenly distributed grids are progressively refined
by a factor of 2 from the most coarse grid of 51 points. The
numerical simulation on each grid is conducted using suf-
ficiently small time steps to archive temporally converged
results.

Table 2 illustrates the numerical errors and conver-
gence rates of all fifth-order numerical schemes. The re-
sult of TCNS coincides with that of the underlying linear
scheme. WCNS-JS also shows approximate fifth-order ac-
curacy, but its resolution is significantly lower than that of
TCNS. In general, using the ENO-like stencil-selection pro-
cedure recovers the optimal linear scheme in this smooth
field.

Table 2. L∞-error and convergence rate of different fifth-
order schemes solving the linear advection equation.

N
Linear WCNS-JS TCNS

Error Order Error Order Error Order

51 5.22E-02 * 1.07E-01 * 5.20E-02 *

101 3.30E-03 3.98 1.04E-02 3.37 3.30E-03 3.98

201 1.16E-04 4.83 4.63E-04 4.49 1.16E-04 4.83

401 3.69E-06 4.97 1.84E-05 4.66 3.69E-06 4.97

801 1.16E-07 4.99 6.36E-07 4.85 1.16E-07 4.99

1601 3.64E-09 4.99 2.02E-08 4.98 3.64E-09 4.99

3.3 Shock-density wave interaction
The shock-density wave interaction problem Shu &

Osher (1989) is characterized by a right moving Mach 3
shock interacting with sine waves in the density field. The
multi-scale wave structure is evolved after the shock wave
interacts with the oscillating density wave, and both the
shock-capturing and wave-resolving capabilities are evalu-
ated thereafter.

The problem is governed by Euler equations and ini-
tialized by

(ρ,u, p) =

{
(3.857,2.629,10.333), x ∈ [0,1],
(1+0.2sin(5x),0,1) , x ∈ (1,10] .

(21)
This case is run on a grid of N = 201 points which are uni-
formly distributed and the final time is t = 1.8. Numerical
solution of WCNS-JS on a grid of N = 2001 is used as the
reference “exact” solution.

As shown in Fig. 3, TCNS produces considerably bet-
ter resolved density waves behind the shock wave compared
with WCNS-JS. Particularly, the result of WCNS-JS in-
dicates strong numerical dissipation, since the small-scale
wave structures are relatively smeared.

3.4 Rayleigh-Taylor instability
Rayleigh-Taylor instability problem is used to examine

the performance of the presented method. Two sets of grids
are used with the resolutions of 128×512 and 256×1024,
respectively. The initial conditions are given by

(ρ,u,v, p) ={
(2,0,−0.025a cos(8πx),1+2y) x ∈ [0,0.25] and y ∈ [0,0.5) ,
(1,0,−0.025a cos(8πx),1+3/2) x ∈ [0,0.25] and y ∈ [0.5,1] ,

(22)

where a is the speed of sound, given by a =
√

γ p
ρ and a

different γ = 5
3 is used for this specific case. Reflecting
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boundary conditions are imposed at the left and right side
of the domain, and constant boundary conditions are given
for the top and the bottom sides, in details

(ρ,u,v, p) =

{
(1,0,0,2.5) y = 1, ∀t,x,
(2,0,0,1) y = 0, ∀t,x.

(23)

Two source terms ρ , and ρv are added to the right hand side
of the third and the fourth equation, respectively.

Density profiles at t = 1.95 are shown in Fig.4. It can
be found that the presented scheme captures much more
abundant wave structures compared with WCNS-JS. More-
over, TCNS on a coarse grid achieves similar or even better
result compared with WCNS-JS on a fine grid.

4 Conclusions
A novel compact nonlinear scheme, which applies the

ENO-like stencil-selection procedure, is introduced in this
article. This method named as TCNS aims at achieving the
optimal linear interpolation in the node-to-midpoint inter-
polation step of the compact nonlinear scheme. The ADR
analysis shows that TCNS recovers the underlying linear
scheme up to high wave numbers, even using a relative large
cut-off threshold. It is also demonstrated by using the lin-
ear advection case that TCNS is capable of fully recovering
the underlying optimal linear scheme in a smooth flow field,
by directly applying the optimal linear weights in the node-
to-midpoint interpolation procedure. Moreover, significan-
t improvements are obtained by TCNS in numerical tests
such as the shock-density wave interaction problem and the
Rayleigh-Taylor instability case, which are characterized by
broadband fluctuations and rich small scales, respective-
ly. These significant improvements of TCNS are mostly
attributed to the use of the ENO-like stencil-selection pro-
cedure, which yields considerably low dissipation and dis-
persion errors compared against WCNS-JS.
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(a)

(b)

Figure 3. Shock-density wave interaction problem: nu-
merical solutions and the exact solution at t = 1.8.

(a)

(b)

Figure 4. Rayleigh-Taylor instability problem: 30 density
contour lines ranging from 0.9 to 2.2.
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