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ABSTRACT
This work presents an entirely new route to de-

veloping turbulence models. The core idea is to as-
sume the most general form of a model equation
possible, and to then use the Lie symmetries of the
time-averaged Navier-Stokes equations to constrain
the form of the equations. In addition to the classi-
cal Navier-Stokes symmetries, which are already con-
tained in most existing turbulence models, we inte-
grate into the model so called statistical symmetries,
which are specific to the equations describing turbu-
lent statistics. These statistical symmetries are an im-
portant recent development, but their high relevance
for accurately describing turbulent statistics has al-
ready been demonstrated. However, they have not
been incorporated into any existing turbulence model
yet. It is found that somewhat unconventional model
variables are crucial to enable incorporating these sta-
tistical symmetries into a turbulence model. A sim-
ple prototype of a model obtained in this way is pre-
sented.

INTRODUCTION
Even though most natural or technical flows of inter-

est are highly turbulent, there is still no universally accurate
and computationally feasible method available for numer-
ically investigating them. The present work is concerned
with Reynolds-averaged Navier-Stokes (RANS) modelling,
which uses the time-averaged Navier-Stokes equations as
its starting point. The RANS equations for incompressible
flow read (Reynolds, 1895)

∂Ūi

∂xi
= 0,

∂Ūi

∂ t
+

∂UiU j

∂x j
+

∂ P̄
∂xi
−ν

∂ 2Ūi

∂x j∂x j
= 0, (1)

where Ui is the velocity, P the pressure divided by the den-
sity, ν the kinematic viscosity, and t and xi are the tem-
poral and spatial coordinates, respectively. The bar de-
notes time-averaging. Usually, the Reynolds decomposition

Ui = Ūi +ui is employed and with this UiU j is expanded to
ŪiŪ j +uiu j, where ui is the fluctuating part of the velocity.
In the present work, this expansion will be omitted when
convenient, and therefore we introduce the abbreviations

Hi j =UiU j and Ri j = uiu j. (2)

The latter is usually referred to as the Reynolds stress ten-
sor, and subsequently, equations written in terms of it are
said to be in fluctuation formulation. On the other hand,
using Hi j directly leads to what is called the instantaneous
formulation.

As Hi j (or Ri j) is unknown, equation (1) cannot be
solved without making additional empirical assumptions.
This is known as the closure problem of turbulence. Many
such assumptions resulting in different turbulence models
have been put forward. Most practically used turbulence
models fall into two categories, eddy viscosity models and
Reynolds stress transport models. Eddy viscosity mod-
els usually use the Boussinesq approximation (Boussinesq,
1877)

Ri j =−νt

(
∂Ūi

∂x j
+

∂Ū j

∂xi

)
+

2
3

kδi j, (3)

or some extension thereof, where δi j is the Kronecker delta,
νt is a model variable called the turbulent viscosity, and k
is the turbulent kinetic energy, i.e. the trace of the Reynolds
stress tensor divided by two, for which a model also has to
be formulated. Equation (3) is used to replace the unknown
Ri j in equation (1) directly. Depending on how νt and k are
modeled, various models emerge. Reynolds stress trans-
port models take a different approach. No model assump-
tions are fed into equation (1), but instead, a transport equa-
tion for Ri j, which can be derived from the original Navier-
Stokes equations and equation (1), is considered. This equa-
tion contains multiple unknown terms, namely dissipation,
pressure-strain-correlation and the triple velocity correla-
tion, for which models have to be formulated. This makes

1



11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11)
Southampton, UK, July 30 to August 2, 2019

the modelling process somewhat more challenging, but the
resulting model can potentially incorporate important tur-
bulent effects more naturally.

Early models were often developed with one specific
flow case in mind, and were found to not generalize very
well. It was probably first understood by Donaldson &
Rosenbaum (1968) that in order for a model to be gener-
ally valid, its equations have to be (i) in correct dimensional
formulation, (ii) in correct tensorial formulation, and (iii)
Galileian invariant, though in the literature it is sometimes
understood that (ii) is part of (iii). Galileian invariance im-
plies that the equations must not change if the physical sys-
tem is translated at a constant velocity, because such a shift
does not influence the physical process itself. These condi-
tions are subsumed under the term invariant modelling, and
are fulfilled by virtually all modern turbulence models.

Underlying all three conditions is an important obser-
vation: within the scope of classical mechanics, there are
transformations that can be applied to a physical system
without affecting the physical process inside of the system.
For an equation describing a physical process, this imposes
the requirement that the equation must also be invariant
under the corresponding variable transformation. Dimen-
sional consistency expresses the fact that a physical process
is insensitive to the unit system used to describe it, and that
the equations therefore must not change if the unit system
is changed. Tensorial consistency ensures invariance with
respect to rotating the physical system by some fixed angle.

In mathematics, such form invariant transformations
are known as symmetries. This term is well-known from
geometrical contexts, where it means the same thing: A cir-
cle is said to have a rotational symmetry because rotating it
does not change its appearance. For symmetries of differ-
ential equations, a powerful theory, discussed in such text-
books as Bluman et al. (2010), is available. In particular, it
is possible to calculate the complete set of symmetries of a
given equation algorithmically, i.e. without any ad-hoc as-
sumptions or the need for human intuition. Besides giving
a deep insight into the physical problem, these symmetries
constitute the ideal basis for generating exact analytical so-
lutions. For example, in turbulence research, this method
has been used successfully by Sadeghi et al. (2018) to ob-
tain very accurate scaling laws for the temporally evolving
jet flow.

In this work, however, the focus will lie on how sym-
metries can facilitate the development of turbulence models.
This approach strongly expands the insight already recog-
nized by the invariant modelling concept, namely the impor-
tance of symmetries, by making better use of its mathemati-
cal potential. In particular, this allows us to incorporate im-
portant features specific to turbulent statistics in addition to
general principles of classical physics into the model. Fur-
thermore, we can formalize the modelling process to a great
extent, thus creating a very general picture of what a model
should look like. Finally, it should be stressed that sym-
metries affect the physical properties of the entire equation
under investigation, not only single terms. In turn, the sub-
sequent modelling methodology generates model equations
rather than focusing on each term individually.

MATHEMATICAL BACKGROUND
We presently employ the theory of Lie symmetries,

which originates from the analysis of differential equations,
in a somewhat unconventional fashion: Rather than extract-

ing symmetries from equations in order to generate solu-
tions, we use symmetries to create new model equations.
In other words, we use the symmetries of the unclosed but
exact description to generate a closed model containing the
same set of symmetries. It is critical for a model to be con-
sistent with the symmetries of the system it intends to de-
scribe, because otherwise, under some circumstances, the
model will behave differently than the original system.

Generally speaking, given some (differential) equation
F in the independent variable x and the dependent variables
y, a transformation of the general form

T : x∗ = f(x,y;a), y∗ = g(x,y;a), (4)

is called a Lie symmetry of this equation if it maps the equa-
tion onto itself, i.e.

F(x,y) = 0⇔ F(x∗,y∗) = 0, (5)

and equation (4) admits transformation group properties,
where a is the group parameter. Without loss of general-
ity, Lie symmetries (4) can always be written such that for
a = 0, equation (4) is the identity transformation, i.e. x∗ =
x, y∗ = y. (Bluman et al., 2010)

With these prerequisites, we expand equation (4) into a
Taylor series around a = 0, yielding

xi
∗ = fi(x,y;a) = xi +aξi(x,y)+O(a2), (6)

yi
∗ = gi(x,y;a) = yi +aηi(x,y)+O(a2), (7)

where

ξi =
∂ fi
∂a

∣∣∣∣
a=0

, ηi =
∂gi

∂a

∣∣∣∣
a=0

. (8)

According to Lie’s first theorem, the infinitesimals ξi and ηi
are sufficient to describe the action of the symmetry trans-
formation, or, in other words, the transformation (4) can be
uniquely rederived from ξi and ηi, and the O(a2)-terms can
be omitted without losing information. Inserting (6) and (7)
into equation (5) leads to

F(x∗,y∗) = F
(

x+aξξξ +O(a2),y+aηηη +O(a2)
)

= F(x,y)+aXF(x,y)+O(a2) = 0, (9)

where X is the so called infinitesimal generator defined by

X = ξi
∂

∂xi
+ηi

∂

∂yi
. (10)

This representation is known as the infinitesimal form of a
symmetry, while equation (4) is known as its global form.
Thanks to Lie’s first theorem, the global form and the in-
finitesimal form can be shown to be completely equivalent,
and one can always calculate one from the other. Further-
more, inserting equation (5) into equation (9) cancels the
left hand side as well as the leading order term on the right
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hand side. As the O(a2)-terms can be omitted in equa-
tion (9), it follows that F is invariant under a symmetry X
if

XF
∣∣∣∣
F=0

= 0. (11)

Equation (11) conveniently allows examining whether an
equation is invariant under a given symmetry, or, if the sym-
metries are unknown, they can be computed from a given
F . On the other hand, if F is unknown, equation (11) can
be viewed as a constraint on F , fulfilling which ensures in-
variance of F under X. This is usually called invariant mod-
elling.

SYMMETRIES OF THE RANS EQUATIONS
The symmetries of the original Navier-Stokes equa-

tions were probably first found in Bytev (1972) and read
in global form

Tt : t∗ = t +a, xi
∗ = xi, Ui

∗ =Ui, P∗ = P (12)

TGali
: t∗ = t, xi

∗ = xi +hi(t), Ui
∗ =Ui +h′i(t),

P∗ = P− xih′′i (t) (13)

Trotα
: t∗ = t, xi

∗ = x jQ
[α]
i j , Ui

∗ =U jQ
[α]
i j ,

P∗ = P (14)

TP : t∗ = t, xi
∗ = xi, Ui

∗ =Ui, P∗ = P+h(t) (15)

TSc,ns : t∗ = te2a , xi
∗ = xiea Ui

∗ =Uie−a ,

P∗ = Pe−2a , (16)

where Q[α] are constant rotational matrices and h(t) and
hi(t) are arbitrary functions. The global form is given here
because it makes the implications of the respective trans-
formations obvious. All of the symmetries (12)–(16) di-
rectly translate into a statistical description of turbulence
as given by the RANS equations (1). The first symmetry
(12) adds a constant to the time coordinate while not trans-
forming the other variables. Evidently, this transformation
does not change equation (1), and therefore is a symmetry
of this equation. Physically, this corresponds to the princi-
ple that there is no absolute origin of time, and physics do
not depend on how it is chosen. The generalized Galileian
symmetry (13) essentially corresponds to the principle that
translation in space does not influence a physical system.
In the case of incompressible flow considered here, one can
even allow accelerated movement, because its effect can be
absorbed into the pressure term. Compressible flows and
general classical physical systems are only invariant under
a linear movement at constant velocity, i.e. symmetry (13)
with hi(t) = ait. The rotational symmetry (14) is closely
connected to the principle of correct tensorial formulation.
It reflects that a fixed rotation of the system has no effect
on the physical processes inside of it. Note, however, that
a time-dependent rotation does have an effect, and is hence
not a symmetry of the Navier-Stokes and the RANS equa-
tions. Symmetry (15) is again specific to incompressible
flows, in which only pressure differences matter, and thus
the absolute value of the backgound pressure can be chosen
arbitrarily. Finally, the scaling symmetry given by equa-
tion (16) expresses that a rescaling of all variables, if done in
a specific way, does not change equation (1). This principle

is closely connected to dimensional consistency, because a
change of the unit system is nothing but a rescaling of all
variables. Evidently, the physical implications of all of the
above symmetries are very natural to everyone familiar with
fluid mechanics, even without extensive knowledge about
the mathematical background. Therefore, these symmetries
are generally observed in modern turbulence models.

On the other hand, it is a relatively recent develop-
ment (Oberlack & Rosteck, 2010; Rosteck & Oberlack,
2011) that the statistical description of turbulence given by
the RANS equations and the infinite hierarchy of moment
equations contains additional symmetries, which have been
shown in Waclawczyk et al. (2014) to be connected with the
intermittent and non-Gaussian nature of turbulent statistics.
These statistical symmetries are given by the transforma-
tions

TTr,stat,1 : t∗ = t, xi
∗ = xi, Ū∗i = Ūi +ai, P̄∗ = P̄,

Hi j
∗ = Hi j or Ri j

∗ = Ri j−aiŪ j−a jŪi−aia j
(17)

TTr,stat,2 : t∗ = t, xi
∗ = xi, Ū∗i = Ūi, P̄∗ = P̄,

Hi j
∗ = Hi j +ai j or Ri j

∗ = Ri j +ai j (18)

TSc,stat : t∗ = t, xi
∗ = xi, Ū∗i = eaŪi, P̄∗ = eaP̄,

Hi j
∗ = eaHi j or

Ri j
∗ = ea(Ri j +ŪiŪ j)− e2aŪiŪ j. (19)

It is physically irrelevant if one uses Hi j or Ri j as defined
in (2), but the above transformations take a much simpler
form when using Hi j. This makes Hi j the more suitable
variable for the subsequent analysis. Symmetries (17)–(19)
have no counterpart in the original Navier-Stokes equations,
because they only appear if one adopts a statistical view on
turbulent flows.

The classical symmetries (12)–(16) have been rarely
considered directly when devising turbulence models, but
their physical interpretation is intuitively known to most
fluid mechanics researchers. In fact, they are mostly equiva-
lent to the conditions imposed by invariant modelling. This
has led to each generation of turbulence models fulfilling
more and more classical symmetries, and since around the
1970s, virtually every turbulence model correctly contains
them. The statistical symmetries (17)–(19), however, can-
not be translated into general physical principles but instead
are very specific to turbulent flows. Therefore, they have so
far not found their way into any existing turbulence model,
even though this would be crucially important.

SYMMETRY-BASED MODELLING
When trying to include the statistical symmetries (17)–

(19) in a turbulence model following conventional mod-
elling heuristics, it quickly becomes obvious that it is dif-
ficult to devise sensible model equations. Instead, we will
employ a more formal symmetry-based modelling strategy.
The idea is to assume a completely general form of what
the final equations could look like, and to successively con-
strain that form by demanding invariance to a prescribed set
of symmetries.

As a simple example, suppose we did not know the
precise form of the Euler equations (i.e. the Navier-Stokes
equations with ν = 0), but only knew that it was some gen-
eral function of temporal and spatial coordinates, velocity
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and pressure, and their first derivatives, i.e.

F
(

xi, t,Ui,P,Ui,x j ,Ui,t ,P,xi ,P,t
)
= 0, (20)

where the comma in the index represents derivation with re-
spect to the following coordinates. We adopt this so called
jet notation to denote derivatives because strictly speaking,
the following method only works for algebraic equations.
The extension to differential equations is accomplished very
simply by treating derivatives as new variables, and calcu-
lating the action of symmetries on these new variables using
the chain rule of differentiation.

We now impose the constraint that F = 0 in (20) be
invariant under all classical symmetries (12)–(16). (As the
Euler Equations are not time-averaged, we do not expect in-
variance under the statistical symmetries.) Using the invari-
ant surface condition (11), this leads to a system of linear
partial differential equations. To understand the implica-
tions of each symmetry, we consider them one at a time.
We start with translation in time given by symmetry (12),
the infinitesimal generator of which as defined in (6)–(8)
and (10) can be calculated to be

Xt =
∂

∂ t
. (21)

Demanding invariance of F = 0 under Xt , according to
equation (11), implies

XtF =
∂

∂ t
F
(

xi, t,Ui,P,Ui,x j ,Ui,t ,P,xi ,P,t
)
= 0, (22)

which means that t has to be removed from the list of vari-
ables. The infinitesimal generator of symmetry (13) with

hi(t) = ai reduces to XGal =
∂

∂xi
, which analogously to

Xt eliminates xi from the set of variables in F. Similarly,
symmetry (15) with h(t) = a eliminates P from the list of
variables, and, using the chain rule of differentiation, sym-
metry (15) with h(t) = at eliminates P,t from (20). Next,
we demand invariance with respect to the general Galileian
symmetry, i.e. equation (13) for arbitrary hi(t) again using
(6)–(8) and (10). The infinitesimal generator then becomes

XGal = hi(t)
∂

∂xi
+h′i(t)

∂

∂Ui
− xih′′i (t)

∂

∂P
(23)

Applying XGal to F in (20) again requires the chain rule of
differentiation, yielding

XGalF = h′i(t)
∂F
∂Ui

+(h′′i (t)−Ui,x j h
′
j(t))

∂F
∂Ui,t

+h′′i (t)
∂F

∂P,xi

= 0. (24)

Equation (24) can be solved using the method of character-
istics, leading to

F
(

Ui,t +U jUi,x j +P,xi ,Ui,x j

)
= 0. (25)

The functional form of F is thus reduced to only two vari-
ables, which already closely resemble the final form of the
Euler equations. A further constraint is imposed by the ro-
tational symmetry (14), the infinitesimal generator of which
is

Xrotα
= εi jα xi

∂

∂x j
+ εi jαUi

∂

∂U j
, (26)

where εi jk is the permutation symbol. The resulting system
of partial differential equations Xrotα

F = 0 is fulfilled if

Ui,t +U jUi,x j +P,xi = 0, (27)

F
(
Ui,xi

)
= 0. (28)

Finally, symmetry (16) constrains this free function F, lead-
ing to

Ui,xi = 0. (29)

The Euler equations have thus be constructed from their
symmetries only. This observation by itself already illus-
trates the relevance of symmetries, but unfolds great po-
tential in turbulence modelling and other modelling chal-
lenges. If one accepts the proposition that the symmetries of
a physical system are not just abstract mathematical proper-
ties of the equations describing it, but in fact contain the
underlying physical axioms in a distilled form, a power-
ful modelling strategy can be put forward. (i) Given an
equation system for which simplified model equations are
to be devised, one may first calculate the symmetries of the
non-simplified equations. (ii) A set of reduced variables on
which the model should depend is defined. (iii) The most
general form of model equations that are invariant under
the symmetries of the exact system (or a selected subset
thereof) is obtained as shown above.

This procedure is now employed in order to develop the
skeleton of a new turbulence model. A simplistic Reynolds
stress transport model without terms accounting for viscous
effects would take the general form

F(xi, t,Ūi, P̄,Hi j,UiP,x j ,Ūi,x j ,Ūi,t , P̄,xi , P̄,t ,

Hi j,xk
,Hi j,t ,UiP,x j,xk

,UiP,x j,t

)
= 0. (30)

We now demand invariance with respect to all classical
symmetries like before, and additionally, we want the model
to be invariant under the statistical symmetries (17)–(19).
Such a model would not only have built into it the axioms
of classical physics represented by symmetries (12)–(16),
but also essential properties of turbulent statistics such as
intermittency and non-Gaussianity. In a similar fashion as
above, the classical translational symmetries of time, space
and pressure as shown in (12), (13) and (15) quickly reduce
the set of possible model variables to

F
(

Ūi,UiP,x j ,Ūi,x j ,Ūi,t , P̄,xi ,Hi j,Hi j,xk
,Hi j,t ,UiP,x j,xk

)
= 0.

(31)
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Unlike before, however, we now have additional trans-
lation symmetries, namely the statistical symmetries (17)
and (18). Its application written in generator form as

XTr,stat,1 =
∂

∂Ūi
and XTr,stat,2 =

∂

∂Hi j
(32)

eliminates Ūi and Hi j from (31). Next, we apply the
Galileian group, which, if Ūi was still allowed to be present,
would yield terms of the type

F
(
· · · ,Hi j,t +ŪkHi j,xk

+ · · ·
)
= 0. (33)

Equation (33) is essentially the form of the left-hand side
terms found in classical Reynolds stress transport models,
which break the statistical symmetries, written in terms of
Hi j as defined in (2). With Ūi eliminated by the statistical
symmetry (32), however, we obtain

F(Ūi,x j ,Ūi,t +Hi j,x j
+ P̄,xi ,Hi j,t +λkHi j,xk

+UiP,x j +U jP,xi

+λiH jk,xk
+λ jHik,xk

−Ūi,xk λ jλk−Ū j,xk λiλk) = 0, (34)

in which we have introduced the abbreviation

λi = Ūi
−1
,xk

(−Ūk,t − P̄,xk ). (35)

The first two terms in (34) naturally have to appear, be-
cause they will simply yield equation (1) with (2). This
is expected, because no modelling of the RANS equations
is needed in a Reynolds stress transport model. Empirical
model assumptions are only made in the equation for the
second moments. The crucial part of (34) is therefore the
third term, in which the expression abbreviated with λi ap-
pears. Notice how this expression appears in places where
one would naturally expect Ūi. Of course, Ūi cannot ap-
pear directly, because in the instantaneous formulation, that
would violate the statistical translation symmetry (17). In
that sense, λi can be seen as its replacement. Looking more
closely at expression (35), it turns out that it transforms like
Ūi under all classical symmetries (12)–(16), but is invariant
under the statistical symmetries (17)–(19). One could say
that the algorithm found a way of replacing Ūi by a combi-
nation of variables that has similar but more suitable sym-
metry properties.

However, it is also the case that λi can only be uniquely
determined if the velocity gradient is invertible, but this is
generally not the case. As a consequence, any equation con-
taining λi may yield non-unique and unphysical results. Be-
fore going any further, we have to conclude that no mean-
ingful equations can be constructed from (34). Obviously,
the assumed form (30) was too narrow, and we need to in-
troduce more model variables.

At the same time, we can extract an important insight
from this failure: In order to devise a model that is invariant
under all classical and statistical symmetries, we have to
introduce a new model variable that behaves like Ūi under
all classical symmetries, but is invariant under the statistical
symmetries. We are going to call this variable Ui, but we
postpone giving a precise definition. Instead, we repeat the
modelling procedure with the set of variables extended by

Ui and, as will prove useful, a pressure-like variable P that
transforms like P̄ under all classical symmetries while being
invariant under the statistical ones. In concrete terms, we
now ask which equations of the general form

F(xi, t,Ūi, P̄,Hi j,Ui,P,Ūi,x j ,Ūi,t , P̄,xi , P̄,t ,Ui,x j ,Ui,t ,P,x j ,P,t ,

Hi j,xk
,Hi j,t ,UiP,x j ,UiP,x j,xk

,UiP,x j,t = 0 (36)

are invariant under all classical and statistical symmetries,
i.e. (12)–(16) and (17)–(19). The additional model vari-
ables vastly increase the solution space of the ensuing PDE
system, which now also contains practically useful model
equations. As a possible solution, we obtain the closed set
of model equations

Hi j,t +UkHi j,xk
+UiP,x j +U jP,xi

+UiH jk,xk
+U jHik,xk

−Ūi,xkU jUk−Ū j,xkUiUk = 0, (37)

UiP,x j,xk
−UiP̄,x jxk −P,x jŪi,xk = 0, (38)

Ui,xi = 0, Ui,t +U jUi,x j +P,xi = 0. (39)

completed by equation (1). For better comparison with ex-
isting Reynolds stress transport models, we rewrite equa-
tion (37) in terms of the Reynolds stress tensor Ri j, also
returning to the normal notation for derivatives and obtain

∂Ri j

∂ t
+Ūk

∂Ri j

∂xk

=
∂Ū j

∂xk
(Ūi−Ui)(Ūk−Uk)+

∂Ūi

∂xk
(Ū j−U j)(Ūk−Uk)

+
∂Rik

∂xk
(Ū j−U j)+

∂R jk

∂xk
(Ūi−Ui)−

∂Ri j

∂xk
(Ūk−Uk)

−ui
∂ p
∂x j
−u j

∂ p
∂xi

, (40)

The equation for the velocity-pressure-correlation (38),
written here in a slightly unusual form as a single term, can
also be written in fluctuation form,

∂

(
ui

∂ p
∂x j

)
∂xk

+
∂ 2P̄

∂x j∂xk
(Ūi−Ui)+

∂Ū j

∂xk

(
∂ P̄
∂x j
−

∂P

∂x j

)
= 0.

(41)
In both cases, it is interesting to note that the fluctuation
formulation contains prominently the velocity difference
Ūi−Ui. This expression is of course itself a velocity, and,
as is readily verified, is Galileian invariant.

Of course, this model prototype does not contain vis-
cous terms, and subsequently also dissipation effects are
not accounted for in equations (37) and (40). As these
terms have very simple transformations under the consid-
ered symmetries, it would have not posed a problem to in-
corporate them in the analysis, but it would have made the
derivation much longer without yielding more insight. One
should not have the impression that it would be difficult to
include these terms into the current model. On a similar
note, the given equation system is somewhat minimal in
that it does not contain additional model terms: all terms
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present play together in fulfilling the considered symme-
tries, and omitting any one of them would cause the break-
ing of one ore more symmetries. Useful turbulence models
generally contain additional terms to model specific turbu-
lent effects, even if removing these terms would not break
any symmetries. Such terms are certainly necessary in the
present model as well in order to predict flows accurately.

Nevertheless, a comparison with the exact equations
and how existing turbulence models treat them is useful.
The exact equation for Ri j reads

∂Ri j

∂ t
+Ūk

∂Ri j

∂xk
=−RikŪ j,xk −R jkŪi,xk − εi j

−ui
∂ p
∂x j
−u j

∂ p
∂xi

,+
∂

∂xk

(
ν

∂Ri j

∂xk
+Ri jk

)
, (42)

in which εi j denotes the dissipation. Setting aside dissi-
pation and viscous diffusion for now, we can attempt to
establish connections between the terms in equation (40)
and equation (42). First, the closure of the pressure-strain
correlation is not performed in equation (40), but in equa-
tion (41), so there is a direct correspondence between these
terms. The first two right-hand side terms of equation (42)
are commonly referred to as the production term. As this
term is closed, i.e. it only contains known properties, it is
normally left as it is. However, as soon as modelling as-
sumptions for the other terms in equation (42) are intro-
duced, the production term in its original form breaks the
statistical symmetries (18) and (19). Therefore, the mod-
elling formalism yields the similar but unproblematic term

Ū j,xk (Ūi−Ui)(Ūk−Uk)+Ūi,xk (Ū j−U j)(Ūk−Uk), (43)

in which instead of Ri j, the product UiU j appears. This
is necessary for preserving the statistical symmetries (18)
and (19).

The only term left to discuss in equation (42) is then the
derivative of the triple correlation, which has to correspond
to the remaining terms in (40):

∂Ri jk

∂xk
≈

∂Rik

∂xk
(Ū j−U j)+

∂R jk

∂xk
(Ūi−Ui)−

∂Ri j

∂xk
(Ūk−Uk).

(44)
In the model by Launder, Reece and Rodi Launder et al.
(1975), the closure assumption

Ri jk ≈
2
3

Cs
k2

ε

(
∂R jk

∂xi
+

∂Rik

∂x j
+

∂Ri j

∂xk

)
(45)

in which Cs is a model parameter, is employed. Compared
to other unclosed terms, relatively little attention seems to
be focused on this term in the context of classical modelling
(Wilcox, 1994), so that we must take care not to draw too
strong conclusions from this comparison. Obviously, the
statistically invariant model does not require the dissipation
as a scale-providing variable to formulate a possible clo-
sure for the triple correlation, but instead uses the velocity
difference Ūi−U j. Apart from that, it is notable that both
expressions prominently contain spatial derivatives of the
Reynolds stress tensor, though the form is rather different.

Even though equation (40) arises only from symmetry
analysis, a term-by-term comparison with the exact equa-
tion (42) does allow an identification of similarities.

CONCLUSION
A statistically invariant turbulence model framework

was successfully developed using a symmetry-based mod-
elling strategy. This prototype of a new class of models
can potentially incorporate important features of turbulence
in an intrinsic manner. It is important to note that this is
accomplished by encoding these principles on the level of
symmetries, rather than attempting a term-by-term mod-
elling on the level of equations. Operating on this higher
level of abstraction enables extracting the essential features
of the exact equations and preserving them in the model
equations in an algorithmic way. This type of modelling ap-
proach is not restricted to turbulence modelling, but could
be used in other modelling challenges as well.

The model skeleton presented is only a basis that will
be extended and tested in the future. Implementing a further
developed model into a numerical solver framework is also
planned.
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