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ABSTRACT
Turbulent conjugate heat transfer of air flow through a

duct partially filled with aluminum porous material is stud-
ied by means of the lattice Boltzmann direct numerical sim-
ulation. The constant wall temperatures are imposed to the
top and bottom walls with a temperature difference, while
the adiabatic boundary conditions are applied to the lateral
side walls. In addition to turbulent heat transfer of the air
flow, the heat conduction of the porous material is simul-
taneously solved. Despite the confinement by the lateral
side walls, the large-scale transverse wavy motion due to
the Kelvin-Helmholtz instability is developed just over the
porous wall. It is found that the intensified turbulence over
the porous wall due to the relaxation of the wall-blocking
effect significantly enhances the secondary flow, and the ad-
vection by the enhanced secondary considerably contributes
to the heat transfer near the top wall. In contrast, the heat
transfer near the porous wall interface is dominated by the
turbulent transport. Analyzing the volume and Reynolds
averaged energy equation, we confirm that the heat flux
term due to the mean velocity dispersion considerably con-
tributes to the heat transfer deeply inside the porous wall
while the advection by the macroscopic velocity induced by
the penetrating secondary flow is significant near the porous
interface.

INTRODUCTION
Since porous media have large contact area per vol-

ume leading to high heat and mass transfer performance,
various applications of the porous materials can be found
in engineering devices, e,g., the carbon paper for gas diffu-
sion layer of fuel cells; the metal foam, sphere packing, rod
bundles for heat exchangers. In the flows around porous
material, the flow transition from laminar to turbulent oc-
curs at relatively low-Reynolds number due to flow distur-
bance induced by the complicated porous geometry (Dybbs
& Edwards, 1984). In order to understand turbulent heat
transfer mechanisms of such flows based on high fidelity
information that cannot be accessed by experimental inves-
tigations, many numerical studies have been carried out.
However, most of the numerical studies applied Reynolds-
averaged Navier-Stokes (RANS) turbulence models with
macroscopic porous medium models: pipe flows filled with
porous materials (Yang & Hwang, 2009), flows through
porous materials bounded by solid walls (Saito & de Lemos,
2010). Moreover, eddy resolving simulations studies are

limited to simple flow geometries: fully-developed porous
medium flows (Suga et al., 2017) and and porous-walled
channel flows (Chandesris et al., 2013). It is well known
that turbulence over a porous wall is enhanced due to weak-
ened wall-blocking effect, thus leading to an increase in
wall friction (Suga et al., 2010; Breugem et al., 2006); how-
ever, the effect of a porous wall on an engineering turbulent
flow have yet to be studied. Accordingly, as a first attempt,
we focus on a rectangular duct flow which has relatively
simple configuration but has great engineering interest ow-
ing to the existing of secondary flows. Performing the di-
rect numerical simulation of the conjugate heat transfer in
a rectangular duct partially filled with porous material, we
aim to reveal the influence of the porous medium on the
turbulent heat transfer in the clear flow region. In addi-
tion, the transport mechanism inside the porous medium is
discussed from a macroscopic viewpoint by analyzing the
budget terms in the volume and Reynolds averaged energy
equations.

Numerical scheme
The lattice Boltzmann method (LBM) has achieved

considerable success in large-scale complex flow simula-
tions owing to the simplicity of the wall treatment, na-
ture of its low numerical dissipation and dispersion, and
high performance of parallel computing. The lattice Boltz-
mann equation can be obtained by discretizing the veloc-
ity space of the Boltzmann equation into a finite number of
discrete velocities ξ α{α = 0, · · · ,Q−1}. In the case of the
LBM, there are several choices for discrete velocity models
and collision term models. We select the D3Q27 multiple-
relaxation-time LBM (MRT-LBM) developed by Suga et al.
(2015) to simulate a time-dependent flow, which was rigor-
ously validated in the application to the DNS of a turbulent
channel flow (Suga et al., 2015) and applied to the DNS
of turbulent flows over rough and porous walls (Kuwata &
Suga, 2016, 2017).

The time evolution of the distribution function of the
MRT-LBM can be written as

|f (ri +ξξξ α δ t, t +δ t)⟩ − |f (ri, t)⟩
= − M−1Ŝ [ m(ri, t) − meq(ri, t) ] , (1)

where |f⟩= ( f0, f1, · · · , f26)
T , δ t denotes the time step, and

ξξξ α represents the discrete velocity vectors. The matrix M is
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a 27× 27 matrix which linearly transforms the distribution
functions to the moments |m⟩= M|f⟩. The collision matrix
Ŝ is diagonal:

Ŝ ≡ diag(0,0,0,0,s4,s5,s5,s7,s7,s7,s10,s10,s10,s13,

s13,s13,s16,s17,s18,s18,s20,s20,s20,s23,s23,s23,s26). (2)

A set of the relaxation parameters is as follows:

s4 = 1.54, s5 = s7, s10 = 1.5, s13 = 1.83, s16 = 1.4,

s17 = 1.61, s18 = s20 = 1.98, s23 = s26 = 1.74. (3)

The relaxation parameters s5,s7 are related to the kinematic
viscosity ν ,

ν = c2
s

(
1
s5

− 1
2

)
δ t = c2

s

(
1
s7

− 1
2

)
δ t. (4)

For the scaler fields, there are also several discrete ve-
locity models and collision term models as with the flow
field models. After validation test in a flow around a
bluff body, a turbulent channel flow, and turbulent porous
medium flows, we confirm the D3Q19 discrete velocity
model with the regularized collision term model yields a
reasonable prediction (Suga et al., 2017). The time evo-
lution of the particle distribution function is expressed as
follows:

|g (ri+eα δ t, t+δ t)⟩= |g(eq) (ri, t)⟩+
(

1− 1
τg

)
|g

′
(ri, t)⟩,

(5)
where the notation |g⟩ = ( f0, f1, · · · , f18)

T , eα represents
the discrete velocity vectors. The terms g(eq) and |g′

(ri, t)
are the equilibrium distribution function and regularized
non-equilibrium part of the distribution function, respec-
tively. The equilibrium distribution function is expressed
as follows:

g(eq)
α = wα T

(
1+

u · eα
c2

s

)
, (6)

where temperature is T = Σα gα , and u is the fluid veloc-
ity. The regularized non-equilibrium part of the distribution
function |g′

(ri, t) is

g′α = wα
N

∑
n=0

(
1
n!

C(n)H(n)(eα/cs)

)
, (7)

For the D3Q19 model, the Hermite expansion coefficients
C(n) and the Hermite polynomial H(n) are

C(n) = ∑
α

g(neq)
α H(n)(eα/cs), (8)

H(0)(eα/cs) = 1, (9)

H(1)
i (eα/cs) =

eα,i

cs
, (10)

H(2)
i (eα/cs) =

eα,ieα, j

c2
s

. (11)
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Figure 1. Computational geometry of a porous duct flow.
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Figure 2. Sketch of a porous medium geometry

The thermal diffusivity Γ is related to the relaxation time τg
as follows:

Γ = c2
s

(
τg −

1
2

)
δ t. (12)

It should be noted that, unlike the other Navier–Stokes
solvers, the LBM does not require any special treatment for
simulating the conjugate heat transfer, which enables us to
easily perform conjugate heat transfer in complicated flow
geometries.

Flow conditions
Figures 1 illustrates the computational geometry of a

rectangular duct flow partially filled with porous material.
The rectangular duct size is 8.7H(x)× 2H(y)×H(z), and
a porous medium consisted of staggered square bar arrays
as illustrated in Fig.2 is considered in the lower half of
the rectangular duct −1 < y/H < 0; thus, the cross-section
of the clear flow region is square. The periodic boundary
conditions are applied in the streamwise direction, and the
flow is driven by imposing a streamwise pressure differ-
ence. The Reynolds number based on the bulk mean ve-
locity in the clear fluid region Ub and the duct width H
is 3500, and the resulting friction Reynolds number over
the porous wall, defined as Reτ = uτ H/ν with uτ being
the friction velocity at the porous wall, is 395. The fric-
tion velocity uτ is computed from a relation among pres-
sure drop, wall-shear stress at the solid walls, and that at
the porous wall. For the thermal boundary conditions, the
top (y = H) and bottom (y = −H) walls are assumed to
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be constant with a temperature difference ∆T (∆T > 0) as
Ty=H = Ty=0 +∆T , while an adiabatic wall is considered to
the lateral walls at z/H =−0.5,0.5. The fluid Prandtl num-
ber is set to Pr = 0.71, and we consider the conjugate heat
transfer: a thermal diffusivity ratio between the solid and
fluid phases is 4.4, which corresponds to a ratio between
aluminum and air. The porosity of the porous medium is
0.77, and the permeability Reynolds number based on the
streamwise wall-permeability is ReK = uτ

√
K/ν = 7.3. In

this permeability Reynolds number flow, the wall perme-
ability of a porous wall significantly affect turbulence be-
cause the wall-blocking effect is weakened (Suga et al.,
2010). The grid node number is 3328(x)×770(y)×402(z),
and 23× 23 grids are used to resolve a cross-section of a
square bar. The computational grid is equilateral, and the
resolution normalized by the porous wall unit velocity is
1.0, which is comparable to those employed in the lattice
Boltzmann DNS studies Kuwata & Suga (2016, 2017). As
the simulated flow is fully developed, the Reynolds aver-
aged values are further averaged in the streamwise direc-
tion. Although the flow inside the porous medium is in-
homogeneous in the streamwise direction, the fluid phase
spatial averaging in the streamwise direction is applied to
the values inside the porous medium region of y/H < 0.

Results and discussion
To validate the simulation results, Fig. 3 compares

the simulated mean velocity U and Reynolds shear stress
−u′v′ with the measured data in our laboratory in the sym-
metry plane of y/H = 0.0. For a comparison, the result
of the porous-walled channel flow from Kuwata & Suga
(2016) is also plotted in Fig. 3. We can confirm an excel-
lent agreement with the experimental results, which demon-
strates that the present DNS can provide high fidelity infor-
mation. The Reynolds shear stress is considerably enhanced
over the porous wall, primarily resulting from the relax-
ation of the wall-blocking effects as reported by Suga et al.
(2010). Moreover, as can be observed in the streamwise
velocity fluctuations in Fig.4, the turbulent vortex structure
is modified by the permeable porous wall. The streamwise
elongated streaky structure is developed below the top solid
wall, whereas the development of the streaky structure is
prevented over the porous wall. The high- and low-speed
regions, which have the strong coherence in the spanwise
direction, alternatively appear in the streamwise direction.
Similar observations were made in the DNS studies of a tur-
bulent porous-walled channel flow (Breugem et al., 2006;
Kuwata & Suga, 2016), and they reported the transverse
wavy motion was originated from the Kelvin-Helmholtz
type of instability initiated at the inflection point of the
streamwise velocity just over the porous wall. The above
mentioned effects of the porous wall on turbulence are con-
sistent with the previous studies of porous-walled channel
flows (Suga et al., 2010; Breugem et al., 2006; Kuwata &
Suga, 2016); however, unlike the result of the porous-walled
channel flow in Kuwata & Suga (2016), Fig. 3 (a) shows
that a maximum peak point of the streamwise mean velocity
does not shit toward the top wall, and the predicted mean ve-
locity profile deviates largely from that of turbulent porous-
walled channel flow. The difference can be attributed to the
influence of the secondary flow which is well known to be
induced in the rectangular duct flow system.

In order to see the mean velocity distributions in the
cross-section, Fig. 5 shows the contour maps of the stream-

(a)                                                                            (b)

Figure 3. Comparison of the simulated results with the
experimental data in the symmetry plane: (a) mean veloc-
ity together with the porous-walled channel flow results in
Kuwata & Suga (2016), (b) Reynold shear stress.

below the top solid wall over the porous wall
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Figure 4. Streamwise velocity fluctuations below the top
solid wall at y = H and over the porous wall at y = 0.

wise mean velocity U/Ub and the secondary flow inten-
sity

√
V 2 +W 2/Ub along with the cross-streamwise veloc-

ity vectors in the clear fluid region. Here, the values denoted
by the capital stand for the averaged values. In a square duct
flow confined by the impermeable solid walls, the counter-
rotating eight vortices which convects the high momentum
fluid from the core region to the corner regions, leading to
the distortion of the streamwise mean velocity (Huser &
Biringen, 1993). These counter-rotating eight vortices are
absent in the porous duct as observed in Fig.5(b), and quite
different secondary flow pattern is formed. In Fig.5(b), the
mean secondary flow from the core region toward the cor-
ners is present in the bottom corners but is absent in the
top corners. The secondary flow toward the bottom corners
generates the counter-clockwise rotating flow sitting on the
porous wall and induces the upward flow along the lateral
walls located at z/H =−0.5,0.5. The upward flow reaches
near the top wall at y/H = 1.0, and this prevents the forma-
tion of the counter-rotating vortex pair in the top corners.
In the symmetry plane at z/H = 0, the downward flow is
induced and convects the low momentum fluid near the top
wall toward the core region, resulting in the hollowed out
mean velocity velocity in Fig.5 (b): the low speed region be-
low the top solid wall y/H = 1.0 near the symmetry plane
of z/H = 0.0 is directed toward the core region. On the
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other hand, since the intensity of the secondary flow toward
the bottom corners is not significant compared with that of
the downward flow near the symmetry plane, the distortion
of the streamwise mean velocity directed toward the bot-
tom corners is insignificant. The secondary flow intensities
of the upward flow along the lateral walls and the down-
ward from in the symmetry plane particularly increase in
strength. The maximum value of the secondary flow inten-
sity reaches 6% of the bulk mean velocity, which is consid-
erably greater than that observed in a square duct (Huser &
Biringen, 1993).

Figure 6 shows the contour maps of the temperature
distributions. To better visualize the convection heat trans-
fer by the enhanced secondary flow, the heatlines proposed
by Kimura & Bejan (1983) are also shown in the figure. The
heatlines defined in analogy with streamlines are expressed
as the iso-contour line of heat function H, defined as fol-
lows:

∂H
∂y

= ρWcp(T −T0)− k
∂T
∂ z

∂H
∂ z

= ρV cp(T −T0)− k
∂T
∂y

(13)

where cp, k and T0 are the constant pressure specific heat,
thermal conductivity, and reference temperature, respec-
tively. The reference temperature are determined as T0 =
Ty=H and T0 = Ty=0 to compute the heat functions in the
clear flow region and in the porous medium region, respec-
tively. The above definition, which is similar to the stream
function for the streamlines, suggests that heat is transferred
along heatlines due to the combined effects of the conduc-
tion and the convection. If heat transfer is dominated by
conduction, heatlines are orthogonal to isothermal lines.

Figure 6 (a) confirms that the heatlines in the clear
fluid region considerably reflect the secondary flow pat-
tern as shown in Fig.5 (b); therefore, the heat in the clear
flow region is convected by the secondary flows rather than
the conduction. Indeed, it can be clearly observed from
Figs.5(b) and 6(a) that the upward mean flow along the lat-
eral walls convects the high temperature fluid to the top
wall, and the downward flow in the symmetry plane con-
vects the low temperature fluid toward the core region.
Since a spacing between the heatlines corresponds to the
intensity of the heat transfer, the convective heat transfer
due to the downward flow in the symmetry plane is found
to be significant. In contrast, when we focus in the porous
medium region in Fig.6(b), the heatlines exhibit a recircu-
lating pattern in the pore region, resulting from the cross-
streamwise mean velocity dispersion. This observation sug-
gests that not only the heat conduction but also the advec-
tion largely contributes to the heat transfer deep inside the
porous medium.

The heat transfer mechanism in the clear fluid region is
discussed by analyzing the budget terms of the normalized
energy equation by Ub,H and (∆T ):

0 = −V
∂T
∂y

−W
∂T
∂ z

− ∂v′T ′

∂y
− ∂w′T ′

∂ z

+
1

PrReb

(
∂ 2T
∂y2 +

∂ 2T
∂ z2

)
, (14)

where the terms −V ∂T
∂y and −W ∂T

∂ z denote the vertical
and horizontal advection terms, respectively. The term

(a)                                           

(b)
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Figure 5. Contour map of the mean velocity distribu-
tion: (a) streamwise mean velocity, (b) Intensity of cross-
streamwise mean velocity with velocity vectors.

− ∂v′T ′

∂y − ∂w′T ′

∂ z is the turbulent transport and the last term on
the right-hand side is the conduction term. The budget term
profiles near the lateral wall at z/H = −0.375 and those in
the symmetry plane at z/H = 0.0 are respectively presented
in Fig.7(a) and (b). In Fig.7(a), near the lateral walls, the
vertical turbulent transport and advection terms convect the
low temperature fluid toward the top wall. The contribu-
tion by the turbulent transport is confined near the top wall
0.8 < y/H < 1.0 while the vertical advection, which is due
to the upward secondary flow, considerably contributes in
the upper half of the clear fluid region 0.5 < y/H < 1.0.
The convection toward the top wall increases the tempera-
ture gradient near in the vicinity of the top wall as observed
in Fig.6(a), thus resulting in a significant increase in the
heat conduction in the region. The heat transfer near the
porous wall is dominated by the turbulent transport; how-
ever, the budget terms near the porous wall have smaller
magnitudes than those near the top wall. In the upper half
of the clear fluid region 0.5 < y/H < 1.0 in the symmetry
plane, Fig.7(b) confirms that the transported energy by the
horizontal turbulent heat flux is convected by the advection
due to the downward secondary flow. In contrast, near the
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Figure 6. Contour map of the mean temperature distri-
bution with heatlines: (a) clear flow region, (b) inside the
porous medium.

porous wall region, as the porous wall enhances turbulent
velocity fluctuation, the wall-normal turbulent heat flux is
particularly enhanced over the porous medium and domi-
nantly transport the energy.

Finally, we discuss the heat transfer mechanism in the
porous medium region from a macroscopic viewpoint. Ap-
plying the volume and Reynolds averaging, we can obtain
the double (volume and Reynolds) averaged energy equa-
tion normalized by Ub, H and ∆T as follows:

0 = −φ⟨U j⟩
∂ ⟨T ⟩
∂x j︸ ︷︷ ︸

C

+
1

PrReb

∂
∂x j

(
∂φ⟨T ⟩

∂x j
+

1
∆V

∫
A

n jT dA
)

︸ ︷︷ ︸
D

− ∂
∂x j

φ⟨u′jT ′
f ⟩︸ ︷︷ ︸

T

− ∂
∂x j

φ⟨ũ jT̃ ⟩︸ ︷︷ ︸
D

+
1

PrReb∆V

∫
A

n j
∂T
∂x j

dA︸ ︷︷ ︸
Sw

,

(15)

where ⟨ϕ⟩ is the volume-averaged value of a variable ϕ , and
ϕ̃ denotes the dispersion: ϕ̃ = ϕ −⟨ϕ⟩. The representative
volume of the spatial averaging is, ∆V = 8,7H(x)×hy(y)×
hz(z), and φ , A and n j are the porosity, superficial area of

the solid phase, and its unit normal vector pointing outward
from the fluid to the solid phase, respectively. The budget
terms C and D are the advection by the macroscopic veloc-
ity and molecular diffusion, respectively. The terms T and
D stand for the transport terms by the volume averaged tur-
bulent heat flux and dispersion heat flux, respectively. Sur-
face integration term included in D is the tortuosity term,
and the wall-heat transfer term Sw acts as an energy ex-
change term between the solid and fluid phases. Profiles of
those budget terms in the symmetry plane are presented in
Fig.8. The heat conduction and dispersion transport terms
are found to be balanced near the most bottom wall. The ad-
vection by the macroscopic mean velocity ⟨U j⟩ increases as
it separates from the bottom wall. The turbulence and dis-
persion transport terms considerably contribute below the
porous medium (−0.4 < y/H < 0.0), and they are almost
balanced with the advection by the macroscopic mean ve-
locity. The enhanced turbulent transport is due to the tur-
bulence penetration whereas the secondary flow in the clear
flow region penetrate the porous wall, and this increases the
transport terms by the macroscopic mean velocity and mean
velocity dispersion. Contribution of the wall-heat transfer
term is found to be marginal, thus indicating that the solid
and fluid phase temperatures nearly reach an equilibrium
temperature and the heat transfer between the solid and fluid
phase hardly occurs.

Conclusions
To discuss the effects of the porous wall on turbulent

heat transfer in a duct flow, we carried out direct numerical
simulation of turbulent conjugate heat transfer of an air flow
through a rectangular duct partially filled with aluminum
porous material. We consider the constant wall tempera-
tures to the top and bottom walls with a temperature differ-
ence, while the adiabatic boundary conditions are applied
to the lateral walls. The heat conduction of the aluminum
porous medium is simultaneously simulated. As in a tur-
bulent boundary layer over a porous wall, the large-scale
transverse wavy motion induced by the Kelvin-Helmholtz
instability is developed just over the porous wall, and the
turbulence over the porous wall is significantly enhanced
due to the weakened wall blocking. Moreover, the enhanced
turbulence strengthens the secondary flow, which substan-
tially affects the mean velocity profile. The budget term
analysis of the energy equation suggests that the enhanced
secondary flow dominantly transports energy near the top
wall whereas the heat transfer near the porous wall is domi-
nated by the turbulent transport. Analyzing the volume and
Reynolds averaged energy equation, we confirm that the ve-
locity dispersion dominantly transports the energy deep in-
side the porous wall, whereas the penetration of the turbu-
lence and secondary flow into the porous wall increases the
heat transfer just below the porous interface.
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