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ABSTRACT
We extend the vortex surface field (VSF), a

Lagrangian-based structure-identification method, to the
DNS database of a spatially developing pipe transition with
the radial model inlet disturbance. The boundary-constraint
method for constructing the VSF from an instantaneous vor-
ticity field is adapted to pipe flows in cylindrical coordi-
nates. The isosurfaces of the VSF, representing vortex sur-
faces consisting of vortex lines with different initial wall
distances, display different evolutionary geometries in the
transition. We observe that the near-wall vortex surface first
forms a hairpin-like bulge, and then under the induction of
the normal hairpin-like structure, some reverse hairpin-like
structures grow from the core region of the pipe. The heads
of normal and reverse hairpins approach to each other, lead-
ing to the strong vortex interaction and the formation of a
turbulent spot. This process is quantified by the elevation
and descend of two typical VSF isosurfaces initially near
the wall and the core region, respectively.

Introduction
The transition to turbulence in pipe flows is one of the

most challenging problems in fluid mechanics over a centu-

ry (Reynolds, 1883) and is of importance in engineering ap-
plications such as drag reduction. The subcritical character
of the pipe transition requires the disturbance with a finite
magnitude to trigger transition process. Fundamental issues
include the route to turbulence and the critical Reynolds
number (Peixinho & Mullin, 2006; Eckhardtet al., 2007;
Schneideret al., 2007; Mellibovskyet al., 2009). The inter-
mittent occurrence of turbulence in pipe transition manifests
itself as puffs and slugs (Wygnanski & Champagne, 1973;
Songet al., 2017). These localized structures expand in
streamwise extent, decay and split, resulting in a finite life
time around a critical Reynolds number (Hofet al., 2006;
Mullin, 2011). Some phenomenological models (Barkley,
2016) have been developed to characterize a bifurcation s-
cenario at a macroscopic level to elucidate the origin of
these localized structures. However, the pipe transition is
still described as “abrupt and mysterious” (Mullin, 2011)
without a detailed description of underlying flow physics.

This mystery can be partially resolved by the high-
fidelity direct numerical simulation (DNS) of the spatially-
developing transition in long pipes (Wuet al., 2015).
The DNS under circumferential-mode inlet disturbances re-
vealed a gradual transition process and matured turbulent
spots composed of primarily normal, forward leaning hair-
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Figure 1. Schematic diagram (front view) of the evolution ofvortex surfaces (from upper to lower panel) in transition inthree
canonical wall-bounded flows. Directions of vorticity tangent to the vortex surfaces are labeled by arrows.

pin vortices. On the other hand, it was recently report-
ed that under radial-mode inlet disturbances, the turbulent
spot composes primarily of reverse, backward leaning hair-
pin vortices (Adrianet al., 2017), in direct contradiction to
the earlier finding (Wuet al., 2015). Moreover, the reverse
hairpin vortices were also reported in the early studies on
homogeneous turbulent shear flow (Rogers & Moin, 1987)
and turbulent channel flow (Moin & Kim, 1985). How-
ever, there has been no thorough examination on the flow
physics and quantitative criteria leading to the formationof
reverse hairpin vortices, especially in spatially developing
pipe transition.

The vortex-surface field (VSF) can be useful to un-
cover the flow physics and provide quantitative criteria for
the generation of reverse and normal hairpin vortices in
spatially-developing pipe transition. The VSF is developed
for studying the Lagrangian-like evolution of vortical struc-
tures (Yang & Pullin, 2011). Every isosurface of the VSF is
defined as a vortex surface consisting of vortex lines. The
VSF has been applied to the Klebanoff-type transition in
channel flow (Zhaoet al., 2016b) and boundary layer (Zhao
et al., 2018) to elucidate the continuous temporal evolution
of vortical structures from a Lagrangian view and to quanti-
fy the connection between the deformation of VSFs and the
rise of skin-friction.

The former VSF study demonstrated that the struc-
tural evolution of vortex surfaces in transition depends on
the symmetry of flow boundary conditions. The schemat-
ic diagram of the evolution of vortex surfaces in transi-
tions in three canonical wall-bounded flows is sketched in
Fig. 1. The generation processes of hairpin-like bulges in
transitional channel and boundary-layer flows are very sim-
ilar, but their subsequent evolutions are essentially different.
The channel flow has the symmetry in the wall-normal di-
rection, so vortex surfaces can have reconnection between
hairpin-like bulges elevated from opposite walls in transi-
tion (Zhaoet al., 2016b) and then the hairpin-like structures
are destroyed. In contrast, this vortex reconnection does not
occur in boundary-layer transition, and alternatively turbu-
lent spots are generated owing to interactions of the struc-
tures in streamwise and spanwise directions (Zhaoet al.,
2018). In pipe transition, the normal hairpins grown from

the wall and the reverse hairpins grown from the core region
appear to converge to the bulk interlayer and lead to more
complex vortex interactions than those in channel flows and
boundary layers.

Therefore, we extend the VSF study to pipe transi-
tion. The continuous evolution of vortex surfaces from a
Lagrangian perspective can shed light on the abrupt, myste-
rious transition process in pipe flows, and in particular, pro-
vide quantitative criteria for when and why reverse hairpins
would appear and dominate.

VSF method
The VSF construction can be considered as a post-

processing step based on the given velocity fields obtained
by DNS. The DNS of a spatially developing circular pipe
with the radial mode inlet disturbance (Wuet al., 2015;
Adrian et al., 2017) was carried out in cylindrical coor-
dinates in a laboratory reference frame without the axial-
ly periodic boundary condition. The pipe length is 500R
with the pipe radiusR, and the computational mesh size is
16384×200×512 in the axial (z), radial (r), and azimuthal
(θ ) directions, respectively. The parabolic laminar profile
of the base flow is

Uz =Um(1− r2), (1)

with the maximum dimensionless velocityUm = 2 on the
centerline. Finite-amplitude and localized radial-mode per-
turbations are introduced at the pipe inlet to induce gradual
transition, eventually leading to a state of fully developed
turbulence. No. 213 of the instantaneous DNS velocity data
(Adrianet al., 2017) is used in the present study by courtesy
of Xiaohua Wu.

Given an instantaneous three-dimensional vorticity
field ωωω(xxx, t) at a time instantt, the VSFφv is defined to
satisfy the constraint (Yang & Pullin, 2010)

Cv ≡ ωωω ·∇∇∇φv = 0, (2)

2



11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11)
Southampton, UK, July 30 to August 2, 2019

i.e., the vorticity vector is tangent to the isosurface ofφv,
and every isosurface ofφv is a vortex surface consisting of
vortex lines.

The boundary-constraint method (Xiong & Yang,
2017) for constructing the VSF from an instantaneous vor-
ticity field has been adapted to pipe flows. The pseudo-
transport equation with the VSF boundary constraint in the
cylindrical coordinates(z,r,θ ) reads
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whereΩ is the VSF computational domain,τ is the pseudo-
time variable defined to distinguish from the physical timet,
andωz, ωr , andωθ are vorticity components in the stream-
wise, radial, and azimuthal directions, respectively. Here,
the VSF subzone of the entire DNS computational domain
is selected as

Ω = {(z,r,θ )|10< z/R < 25, −π/2< θ < π/2} (4)

to focus on the region with the emergence of coherent struc-
tures. The initial condition for Eq. (3) is set toφv0 = 1−r/R
and its isosurfaces are cylindrical surfaces, which stay in-
variant in the laminar Poiseuille flow. By solving Eq. (3),
the given initial conditionφv0 converges to an approximate
VSF solution.

In the numerical implementation, Eq. (3) is ad-
vanced inτ using the third-order total-variation diminishing
Runge-Kutta method, and the convection term is treated by
the fifth-order weighted essentially nonoscillatory (WENO)
scheme. The numerical diffusion in the WENO scheme can
serve as a numerical dissipative regularization for Eq. (3).
In order to increase the computational accuracy and effi-
ciency in the calculation of Eq. (3), two ghost zones are
added next to the azimuthal boundaries, in which vortex
lines are stretched to be normal to boundaries of the ghost
zones. More details of the boundary-constraint method can
be found in Xiong & Yang (2017).

In general, the computedφv cannot be an exact VS-
F solution, and the deviation of isosurfaces ofφv from
vortex surfaces is quantified by the cosine of the angle
between the vorticityωωω and the scalar gradient∇∇∇φv as
λω ≡ ωωω ·∇∇∇φv/(|ωωω ||∇∇∇φv|) (Yang & Pullin, 2010). The nu-
merical VSF solution is calculated on uniform grid points
Nφ

z = 1500,Nφ
r = 500, andNφ

θ = 500, with vorticityωωω in-
terpolated onto the grid points inΩ for VSF calculation.
The pseudo evolution of the averagedλω is shown in Fig. 2,
where〈·〉 denotes the volume average overΩ. Since the de-
viation is around 1%, the boundary-constraint method can
provide a very accurate VSF in the transitional pipe flow.

Results
To characterize the transition process, we calculate an

energy norm of the fluctuating velocity inΩ as

E =

∫ 2π
0

∫ R
0 (u2

z +u2
r +u2

θ )rdrdθ
∫ 2π
0

∫ R
0 U2

z rdrdθ
(5)
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Figure 2. Pseudo-evolution of〈|λω |〉 in the VSF compu-
tational domain.
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Figure 3. Spatial evolution of the energy norm of the fluc-
tuating velocity in the axial direction.

whereuz, ur, anduθ are fluctuating velocity components
in axial, radial, and azimuthal directions, respectively.As
shown in Fig. 3, the energy norm in the instantaneous DNS
velocity data grows exponentially with the axial distance
from z/R = 10 to 15, then fluctuates fromz/R = 15 to
22 and peaks aroundz/R = 20, and finally decays. Cor-
respondingly, from the isosurface of the swirling strength
λci in Fig. 4, small-scale hairpin-like structures abruptly e-
merge and subsequently grow into a ‘turbulent spot’ com-
prised of a number of hairpin-like structures, then the flow
is re-laminarized with vanishing hairpin-like structures.

We use VSF isosurfaces to characterize the interaction
between the normal and reverse hairpin vortices in the pipe
transition. The isosurfaces with the same initial cylindrical
geometry and different initial wall-distances can have dif-
ferent geometries in their evolution. The VSF isosurfaces
constructed from the instantaneous DNS database of pipe
transition at 10< z/R < 25 in Ω are shown in Fig. 4. The
inner VSF isosurface ofφv = 0.6 initially near the central
core region is color-coded by the normalized radial coor-
dinater/R, and the outer VSF isosurface ofφv = 0.2 ini-
tially near the wall is translucent and colored in gray. In
Fig. 4, the vortex surface near the wall first forms a the
thumb-shaped bulge and then evolves into a hairpin-like
structure, which is very similar to the channel flow tran-
sition (Zhaoet al., 2016b) and the boundary-layer transi-
tion (Zhaoet al., 2018). Subsequently, under the induction
of these normal hairpin vortices which generates the fluc-
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Figure 4. The side view of isosurfaces ofλci (top) and VSF (bottom) constructed from the DNS of pipe transition at 10<
z/R < 25. The isosurface ofλci and the inner VSF isosurface ofφv = 0.6 near the core region is color-coded by the normalized
radial coordinater/R, and the outer VSF isosurface ofφv = 0.2 near the wall is translucent and colored in gray.

Figure 5. The zoomed-in, perspective view of VSF isosurfaces around 21< z/R < 25 extracted from Fig. 4. Some vortex
lines are integrated from the surfaces.

tuating wall-normal velocity, some reverse hairpin vortices
grow from the core region of the pipe. The interaction of
these reverse hairpins among themselves or with the normal
hairpins produces small-scale hairpin packets, which leads
to the formation of a turbulent spot aroundz/R = 20. These
observations display a gradual and continuous evolution of
vortex surfaces during the transition process. By contrast,
the emergence and disappearance of coherent structures vi-
sualized by the isosurface of Eulerian vortex-identification
criteria (e.g.,λci) appear to be abrupt without enough clues
for explaining the structural change.

In particular, we elucidate the generation mechanism
of reverse hairpin vortices in pipe transition with radial in-
let disturbances using VSF. As shown in the close-up view
of VSF isosurfaces at 21< z/R < 25 in Fig. 5, all the vortex
lines are closed loops in the background Poiseuille flow. If
they are perturbed in the radial direction, the vortex surfaces
near the core region can be pulled down and gradually de-
form under the shear layer. Subsequently they form reverse
triangular bulges and hairpin-like structures, and descend to
the wall. Their “heads” with largerr move slower than their
“legs” with smallerr so that the legs are stretched. This
mechanism is similar to the formation of normal hairpins
generated from the wall (Zhaoet al., 2016b, 2018), but the
two types of hairpins generally have opposite preferential
orientations (see Fig. 1).

To further quantify the VSF results, we choose two typ-
ical VSF isosurfaces to characterize the elevation and de-
scent of vortex surfaces along the streamwise direction. For
a given VSF isosurface at a givenz, the distance to the wall
of sample pointsG = {(zi,ri,θi)}|i ∈ {0,1, ...,NG} on this

surface is calculated as

dr(φv,z) = 1− r(φv,z), (6)

and we define operators of averaging, maximum, and min-
imum of dr over the azimuthal direction by〈·〉θ , maxθ (·),
and minθ (·), respectively.

Figure 6 plots the wall distances of VSF isosurfaces
of φv = 0.2 and 0.6. We observe that the mean wall dis-
tance〈dr〉θ of these two VSF isosurface remains almost un-
changed, owing to the quasi-conservation of mass between
a vortex surface and the wall (Zhaoet al., 2016a). On the
other hand, the leading edge of the normal hairpin is gener-
ated and lifted from the wall, as the growth of maxθ (dr) for
φv = 0.2 in Fig. 6, and then the descended reverse hairpins
forms around the core and grows to the wall nearz/R = 16,
as the decrease of minθ (dr) for φv = 0.6. Figure 7 plots
contour lines ofφv = 0.2 and 0.6 on thez–r plane to further
illustrate the generation of the normal and reverse hairpins.
Aroundz/R = 20, the reverse hairpins interact with the nor-
mal hairpins, leading to the formation of a turbulent spot.
The event of approaching vortex surfaces from the wall and
the core region coincides with the growth of the energy nor-
m of fluctuating velocity in Fig. 3. Finally aroundz/R = 25,
both maxθ (dr) and minθ (dr) converge to their〈dr〉θ , indi-
cating that VSF isosurfaces are relaxed towards cylindrical
surfaces and the flow is re-laminarized.

As sketched in Fig. 1, the interaction of vortex sur-
faces in pipe transition is very different from transitions
of channel flow and boundary-layer flow owing to differ-
ent symmetries of boundary conditions. Figure 8 plots the
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Figure 6. Wall distances of two typical VSF isosurfaces.
Solid blue line: 〈dr〉θ for φv = 0.6, dashed blue line:
minθ (dr) for φv = 0.6, solid red line:〈dr〉θ for φv = 0.2,
dashed red line: maxθ (dr) for φv = 0.2.

Figure 7. VSF contour lines ofφv = 0.6 (blue) andφv =

0.2 (red) on thez–r plane with the contour ofωθ at 12≤
z/R ≤ 17.

VSF contour lines onr–θ planes with contours of stream-
wise vorticity at four streamwise locations. Atz/R = 11
in Fig. 8(a), under the inlet disturbance, the VSF contour
line of φv = 0.2 near the wall is deformed to form some
bulges. These near-wall bulges develop further downstream
at z/R = 15 in Fig. 8(b) and induce deformation of the VSF
contour line ofφv = 0.6 near the core region. The two VS-
F contour lines continue to deform and gradually approach
to each other atz/R = 20 in Fig. 8(c). In particular, the
nearly parallel directions of vortex lines of normal and re-
verse hairpin heads in Fig. 9 induce stronger vortex interac-
tions with intensive vorticity amplification (Xiong & Yang,
2019) than the viscous calculation of approaching nearly
anti-parallel vortex lines in the transition of channel flows
(Zhao et al., 2016b). Moreover, the background contour
shows that the strong positive and negative streamwise vor-
ticities appear in pairs, which is due to the deformed VSF
contour lines are extended towards the streamwise direction
to form hairpin legs. Finally, the flow field becomes re-
laminarized, and VSF contour line ofφv = 0.2 near the wall
at z/R = 24 in Fig. 8(d) relaxes to the initial ring.

Conclusions
The VSF is applied to the DNS database of a spatially

developing circular pipe with the radial model inlet distur-
bance. In order to construct the VSF from an instantaneous
vorticity field in pipe flow, the boundary-constraint method
(Xiong & Yang, 2017) is adapted to cylindrical coordinates.

Isosurfaces of the VSF are extracted to visualize the
continuous evolution of vortex surfaces, which elucidates

Figure 8. VSF contour lines ofφv = 0.6 (blue) andφv =

0.2 (red) on ther–θ plane with the contour ofωz at (a)
z/R = 11, (b)z/R = 15, (c)z/R = 20, and (b)z/R = 24.

Figure 9. The front view of typical vortex lines integrated
on VSF isosurfaces ofφv = 0.6 (blue lines) andφv = 0.2
(red lines) at 12≤ z/R ≤ 17. The translucent surfaces de-
note initial VSF isosurfaces ofφv0 = 0.6 (blue) andφv0 =

0.2 (red).

the abrupt generation and interaction of reverse and normal
hairpin vortices in pipe transition. The VSF isosurfaces,
with the same initial cylindrical geometry and different ini-
tial wall distances, show different evolutionary geometries
in the transition. We observe that the VSF isosurface near
the wall first forms a thumb-shaped bulge and develops into
a hairpin-like structure. Subsequently under the induction
of these normal hairpin vortices, some reverse hairpin vor-
tices grow from the core region of the pipe. The strong
interaction of the normal and reverse hairpins or among
themselves produces small-scale structures, leading to the
formation of a turbulent spot. This event coincides with the
growth of the energy norm of fluctuating velocity, and is
quantified by the elevation and descend of two VSF isosur-
faces initially near the wall and the core region, respectively.
Then, VSF isosurfaces are relaxed towards initial cylindri-
cal surfaces and the flow is re-laminarized.

Based on the VSF study of pipe transition and for-
mer VSF studies of transitional channel and boundary-layer
flows (Zhaoet al., 2016b, 2018), we will compare different
dynamics of vortex surfaces and explore whether univer-
sal flow structures or processes exist in transition in three
canonical wall-bounded flows. The similarities in structural
evolution in transitional flows can be helpful to develop
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more universal subgrid-scale wall models and data-driven
predictive tools in wall-bounded flows.
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