
11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11)
Southampton, UK, July 30 to August 2, 2019

THE THREE-DIMENSIONAL STRUCTURES IN TURBULENT
COUETTE-POISEUILLE FLOWS ON THE VERGE OF SEPARATION

Zehuan Wu, Callum Atkinson, Julio Soria
Laboratory for Turbulence Research in Aerospace and Combustion

Department of Mechanical and Aerospace Engineering
Monash University

Clayton, Victoria 3800, Australia
zehuan.wu@monash.edu, callum.atkinson@monash.edu, julio.soria@monash.edu

Atsushi Sekimoto
Department of Materials Engineering Science

Osaka University
Osaka 560-8531, Japan

asekimoto@cheng.es.osaka-u.ac.jp

ABSTRACT
This work investigates flow structures in Couette-

Poiseuille (C-P) flows with the adverse pressure gradient
(APG) adjusted to create zero mean skin friction on the sta-
tionary wall. The vortical structures are identified as regions
with a positive value of the discriminant of the velocity gra-
dient tensor (Chong et al., 1990; Soria et al., 1994). The
data used in current study are from direct numerical sim-
ulation (DNS). The enstrophy density and the dissipation
of kinetic energy carried by flow structures are instigated
by examining the second invariants of the symmetric strain
rate tensor Si j and the skew-symmetric rate of rotation ten-
sor Wi j (Chong et al. (1998)). Some characterizations of the
topological flow structures in the near-wall region are simi-
lar to a viscous sub-layer in channel flows (Blackburn et al.,
1996).

INTRODUCTION
Understanding flow structure of a turbulent flow as it

approaches separation is essential for separation control.
The topological classification of the velocity gradient, rate-
of-strain and rate-of-rotation tensors is first employed to
study the turbulent mixing layer by Soria et al. (1994). The
invariants can be used to depict the stretching and rota-
tion of eddies in turbulent flows and they have been stud-
ied in a wide range of flow configurations, such as turbu-
lent boundary layers with APG or zero pressure gradient
(ZPG)(Chong et al., 1998), turbulent channel flows (Seki-
moto et al., 2016b; Blackburn et al., 1996) and the tur-
bulent/nonturbulent interface in jets (da Silva & Pereira,
2008). Also, important features are obtained by analyzing
the volume integral of the invariants especially in homoge-
neous flows (Soria et al., 1997). These studies regarding the
properties of the velocity gradient tensors showed a number
of common features of flow motions. In the buffer layer,
log layer and wake region in wall-bounded turbulent flows,
the joint probability density function of R and Q features a
tear-drop shape, indicating the similar proportion of vortical

structures and saddles.
In this paper, we examine the distributions of the in-

variants of the velocity gradient tensor Ai j, the rate of strain
tensor Si j and the rate of rotation tensor Wi j across the
shearless wall to half channel height in the C-P flow in order
to clarify the topology of the turbulent flow structures when
the flow is on the verge of separation.

NUMERICAL METHOD
Governing equations in direct numerical sim-
ulations

In the DNS, the streamwise, wall-normal and spanwise
directions are x, y and z respectively. The corresponding
velocity components are u, v and w. <>xz represents time-
dependent average in x and z which are homogeneous di-
rections. Capital letters, such as U , represent mean values
over all homogeneous directions and time. Primes, such as
u′, are fluctuations. Lower letters, such as u, represent in-
stantaneous values, so u = U + u′. The sketch of the C-P
flow is shown in figure 1. In the DNS, the Navier-Stokes
equations for incompressible flow are solved in the form of
evolution equations for the wall-normal vorticity ωy and the
Laplacian of the wall-normal velocity φ = ∇2v (Kim et al.,
1987),
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Figure 1. Sketch of mean velocity profiles and flow con-
figuration.

where (Hx,Hy,Hz) = (u,v,w)× (ωx,ωy,ωz).
The governing equations for 〈u〉xz and 〈w〉xz are

∂ 〈u〉xz
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=−∂ 〈uv〉xz

∂y
+ν

∂ 2〈u〉xz

∂y2 (5)
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since the flow is homogeneous in x and z, 〈v〉xz = 0 because
of the continuity. These equations are solved using the spec-
tral method, which uses Fourier series in the streamwise
and spanwise directions and Chebychev polynomial in the
wall-normal direction (Sekimoto et al., 2016a, 2018). In the
simulation, the computational domain is periodic in x and z.
Lx, Ly and Lz are the size of the domain in the streamwise,
wall-normal and spanwise directions respectively, such that
0 ≤ x ≤ Lx and 0 ≤ z ≤ Lz. In streamwise and spanwise
directions, two-dimensional Fourier-expansions with 3/2
dealiasing are used. The grid numbers in physical space are
Nx and Nz. The corresponding resolution are ∆x = Lx/Nx
and ∆z = Lz/Nz. In the wall-normal direction, Chebychev
polynomial is used. Time stepping is carried out by a third-
order Runge-Kutta method which is described in detail in
Sekimoto et al. (2016a).

In this paper, we present a simulation with the
Reynolds number, Re = 2880, defined by the half channel
height, h, and the velocity of the moving wall, Uw. The
DNS parameters are summarised in table 1. ∆x+ and ∆z+

are the grid spacing ∆x and ∆z in viscous length scale de-
fined in terms of the friction velocity uτ at the moving wall
and the kinematic viscosity ν . y+10 is the distance of the 10th
gird from the wall in viscous length scale. β represents the
non-dimensional pressure gradient, β = hH/τ , where H is
the pressure gradient and τ is the mean wall shear stress at
the stationary wall.

Velocity gradient invariants
The velocity gradient tensor is defined as Ai j =

∂ui/∂x j . The characteristic equation of Ai j is given by

λ
3 +Pλ

2 +Qλ +R = 0 (7)

where P, Q and R are the first, second and third invariants
respectively, defined as

P =−tr(A) (8)

Q =
1
2
(P2− tr(A2)) (9)

R =−det(A) (10)

where tr() is the trace and the det() means the determinant
of the tensor. Due to the continuity, P is zero for incom-
pressible flows. The discriminant of the velocity gradient
tensor is given by

D =
27
4

R2 +Q3 (11)

The velocity gradient tensor can be decomposed into
two parts, the rate of strain tensor Si j

Si j =
1
2
(Ai j +A ji) (12)

and the rate of rotation tensor Wi j

Wi j =
1
2
(Ai j−A ji) (13)

In addition, the invariants of Si j are Ps, Qs and Rs which
are defined in a similar way as the invariants of Ai j. Qs is
proportional to the local rate of viscous dissipation of ki-
netic energy ε = 2νSi jSi j = −4νQs. For incompressible
flow, Ps = 0.

The invariants of Wi j are Pw, Qw and Rw. Pw = Rw = 0
for impressible flows. Qw = 1

2Wi jWi j is related with the
enstrophy density.

RESULTS
One-point statistics

The mean streamwise velocity profile normalized by
Uw is shown in figure 2. In outer scaling, we can see the
feature of the mean velocity distribution clearly in the re-
gion far away from the wall. At the stationary bottom wall
where y/h = 0, the gradient of mean streamwise velocity
is negligible compared with on the moving top wall where
y/h = 2. The local shear stress increases monotonically and
reaches its maximum at the moving wall. The shearless re-
gion cannot be seen clearly in outer scalings so the mean
streamwise velocity normalized by uH and lH is shown in
figure 3. The characteristic velocity and length, uH and lH ,
were first used by (Stratford, 1959) in the study of a sepa-
rating turbulent boundary layer. uH and lH are defined as
follows:

uH = (−ν

ρ
H)1/3 (14)

lH = ν/uH (15)

where ρ is the density of the fluid and H is the pressure
gradient. In this paper, uH and lH will be referred to as
Stratford units for simplicity.

We can see that the shearless region exits from y/lH =
0 to 1 corresponding y/h = 0 to 0.033. The profile then
follows a linear trend from y/lH = 1 to 16 (y/h = 0.033 to
0.50) which is called the square-root layer. The study by
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Table 1. Parameters of the simulation.

Re Lx Ly Lz Nx Ny Nz ∆x+ ∆z+ y+10 β

2880 8πh 2h 4πh 1280 257 1024 5.3 3.3 2.0 -672
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Figure 2. Profile of mean streamwise velocity U normal-
ized by half channel height h and the velocity of the wall
Uw.
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Figure 3. Profile of mean streamwise velocity U in Strat-
ford units.

Coleman et al. (2017) showed that the range of the shear-
less region seems to be independent of the Reynolds number
while the range of the square-root layer is not. At y/lH = 16
to 32 (y/h = 0.50 to 1.0), the profile is no longer linear and
more affected by the moving wall. Thus, in this paper, the
structures are investigated in these three regions.

Figure 4 shows the streamwise, spanwise and wall-
normal velocity fluctuations 〈u′u′〉 〈v′v′〉 〈w′w′〉 and
Reynolds stress 〈u′v′〉 in Stratford units. It is shown that
all the fluctuations remain approximately zero in the shear-
less region and then start to increase until they reach their
respective maximum near the moving wall. It is worth not-
ing that the wall-normal velocity fluctuation 〈v′v′〉 is linear
in the square-root layer as shown in figure 4. The Reynolds
stress 〈u′v′〉 is also linear with wall-normal distance in outer
scaling (Figure 5).
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Figure 4. Profile of streamwise, wall-normal and span-
wise velocity fluctuation and Reynodls stress in Stratford
units. 〈u′u′〉− = 〈u′u′〉/(uH)
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Figure 5. Profile of streamwise, wall-normal and span-
wise velocity fluctuation and Reynodls stress in outer scal-
ing.

Turbulent structures
All the invariants in Figure 6 to 8 are normalized by

〈Qw〉V which is the space average of Qw. As pointed out
by Soria et al. (1997), 〈Qw〉V = 〈−Qs〉V in homogeneous
flows. Then it is better to normalize the invariants using
a scaling related with the invariants themselves rather than
outer scalings. The gray level are logarithmic in these fig-
ures.

Figure 6 shows the joint probability density function
(JPDF) between Q and R in regions 0 < y/lH < 1, 1 <
y/lH < 16 and 16 < y/lH < 32 separately. The blue line
represents D = 0. No tear-drop shape can be observed in
the region 0 < y/lH < 1. The contour lines correspond the
probability of 0.98, 0.96 and 0.91. The JPDF has the small-
est extent in the region 0 < y/lH < 1 due to the small ve-
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locity gradients in that region. A preference for the third
and fourth quadrants can be seen, indicating more saddle
topologies in this region. This feature is similar to the
viscous sub-layer in turbulent channel flows observed by
Blackburn et al. (1996). Moving away from the wall, in re-
gions 1 < y/lH < 16 and 16 < y/lH < 32, the preference for
the second and fourth quadrants becomes apparent, show-
ing the typical tear-drop shape found in turbulent boundary
layers, indicating more stable stretching vortical structures
(Chong et al., 1998). The extent of the JPDF becomes larger
which means it still does not reach the wake region other-
wise the extent should decrease. The shape in the JPDF is
similar to the buffer layer or log-law region in a turbulent
channel flow (Blackburn et al., 1996), indicating the vis-
cous effect is negligible at y/lH > 1. The contour lines in
1 < y/lH < 16 correspond the probability of 0.98, 0.96 and
0.88. In 16 < y/lH < 32, The contour lines correspond the
probability of 0.96, 0.89 and 0.75. This shows that the in-
variants become more extended in range and have a trend of
overall expansion.

Figure 7 shows the JPDF between Qs and Rs in three
regions. The influence of the shearless wall can be seen
in the region 0 < y/lH < 1. The contour lines correspond
the probability of 0.98, 0.93 and 0.85. The distribution of
data are crowed along Rs = 0 and high negative Qs. This
indicates the highest dissipation of kinetic energy occurs
in 0 < y/lH < 1. This preference is also similar to the
viscous sub-layer in a turbulent channel flow (Blackburn
et al., 1996). With the distance from the wall increasing,
the minimum value of Qs decreases, the extent of Rs in-
creases and a gathering towards Ds = 0 can be seen. This
shows the rate of strain becomes more three-dimensional
and local dissipation is much smaller compared with the re-
gion 0 < y/lH < 1. In the region 1 < y/lH < 16, the con-
tour lines correspond the possibility 0.99, 0.97 and 0.92. In
the region 1 < y/lH < 16, the contour lines correspond the
possibility 0.98, 0.94 and 0.84. This implies that most of
the data are located within a small region (Qs < −0.2 and
0.1 < Rs < 0.1), while only about 10% of them increase
rapidly.

The JPDF between Qs and Qw in regions 0 < y/lH < 1,
1 < y/lH < 16 and 16 < y/lH < 32 is shown in figure 8. In
the region 0 < y/lH < 1, all data follow a 45◦ line, which is
similar to a viscous sub-layer in a turbulent channel flow
(Blackburn et al., 1996). In this region, Qw and Qs are
balanced, which in turn indicates the negligible wall shear
stress or velocity gradients. In the region 1 < y/lH < 16,
the effect of the wall can still be observed due to the weak
preference towards the 45◦ line, so the vortex sheet is still
apparent and the contour lines correspond 0.99, 0.98 and
0.94. In the region 16 < y/lH < 32, a mix of all motion
types happens due to more scattered distribution. The con-
tour lines within this region correspond 0.99, 0.96 and 0.87.
The distribution has a trend of moving to Qs = 0, indicating
more vortex tubes or filaments in the region.

CONCLUDING REMARKS
Direct numerical simulation of a Couette-Poiseuille

(C-P) flows with zero mean skin friction on the station-
ary wall has been undertaken. One-point statistics of the
flow are presented, the Reynolds stress is found to be lin-
ear with wall-normal coordinate from the shear-less wall.
Due to zero mean wall shear stress, viscous units are not
applicable. A regional division based on Stratford units is
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Figure 6. Joint Probability density function between Q
and R normalized by 〈Qw〉V in the regions 0 < y/lH < 1,
1 < y/lH < 16 and 16 < y/lH < 32.

proposed. The region 0 < y/lH < 1 seems to be indepen-
dent with Re and the features of all the flow topologies are
similar to a viscous sub-layer in a channel flow (Blackburn
et al., 1996). In the square root layer, 1 < y/lH < 16, the
distribution of Qw and Qs represents a unique feature which
is unlike any region in a turbulent boundary layer or channel
flow. The joint p.d.f. in this region has a relative mixture of
motion types due to the scattered distribution but also with a
preference towards the 45◦ line. It seems like a transitional
region. In the region 16 < y/lH < 32, the joint p.d.f of the
topologies shows a similar distribution to buffer layers and
also the extents are the largest.
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Figure 7. Joint Probability density function between Qs

and Rs normalized by 〈Qw〉V in the regions 0 < y/lH < 1,
1 < y/lH < 16 and 16 < y/lH < 32.
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