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ABSTRACT
Recent studies have reported a departure from Taylor’s

constant Cε scaling of the turbulent kinetic energy (TKE)
dissipation rate, whereby Cε was shown to depend on the lo-
cal Reynolds number Reλ defined by the Taylor microscale.
The present study uses an active grid to produce unsteady
flows by approximating step changes and periodic varia-
tions of the freestream velocity in an effort to investigate
the dependency of the turbulent stochastic fluctuations on
the periodic flow component. Results show that the turbu-
lence intensity of the flow depends in the phase-averaged
sense on the imposed periodic velocity. The coupling be-
tween the turbulent fluctuations and the periodic component
is theoretically demonstrated using the TKE budget equa-
tion for a periodic flow. Additionally, Cε is shown to follow
the new Reλ scaling for higher flow frequencies, while be-
ing a constant for part of the cycle and following the Reλ

scaling for other parts for low frequencies.

INTRODUCTION
In the well-known Richardson-Kolmogorov cascade,

the turbulence is assumed to have reached an asymptotic
state where it is at equilibrium. Therefore, the rate at which
kinetic energy is supplied by the mean flow is equal to
the dissipation rate at the small scales. As a consequence
of this equilibrium, the turbulent kinetic energy dissipation
rate was shown to scale as

ε =Cε

(√
u′2
)3

L
, (1)

by Taylor (1935). In (1),
√

u′2 is the root mean square of
the turbulent velocity fluctuations, ε is the mean turbulence
kinetic energy dissipation rate, L is the integral length scale,
which is considered to be representative of the largest eddies
in the flow, while Cε is a constant.

As reported by Vassilicos (2015), there has been con-
siderable support for the fact that Cε is a constant through

both direct numerical simulations (DNS) and experiments.
The findings compiled by Sreenivasan (1984) from the lit-
erature and the results of Burattini et al. (2005) showed that
Cε asymptoted to a constant value at local Reynolds num-
bers, Reλ ≥ 100 and Reλ ≥ 60 respectively, where Reλ is
defined using the Taylor microscale λ , viz.

Reλ =

√
u′2λ

ν
. (2)

However, a deviation from the constant value of Cε was
first experimentally reported by Seoud & Vassilicos (2007),
who showed that along the centerline in the turbulence de-
cay region of fractal grids, Cε is not constant and scales
with Re−1

λ
, even though the energy spectra show an exten-

sive region that closely scaled with -5/3. This finding has
been readily verified through other experiments involving
different flows and grid types. Using PIV to study the wake
of square fractal grids, Discetti et al. (2013) observed sig-
nificant variations in the value of Cε as a function of Reλ .
Similar results were found by Nagata et al. (2013) who in-
vestigated the turbulent kinetic energy budget by producing
cross-sectional profiles of advection, transport, production,
diffusion and dissipation terms at various streamwise loca-
tions in the wake of fractal grids. Additionally, Isaza et al.
(2014) found that increasing the inlet Reynolds number for
grid-generated turbulence caused an extension of the region
within which the new Cε scaling exists. As a result, Vassil-
icos (2015) goes on to conclude in his review that the new
Cε scaling was thought to represent a fundamental departure
from classical turbulence models.

Recent DNSs of turbulence under the action of a spa-
tially periodic forcing (e.g. Goto & Vassilicos (2016a)) re-
ported a similar Cε scaling given by

Cε =
Rep/2

0
Req

λ

, (3)
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where p and q are approximately equal to unity and Re0
is an inlet Reynolds number that is constant in space and
time. However, the results presented by Hearst & Lavoie
(2014) and Isaza et al. (2014) show that the new scaling
(3) does not represent a fundamental violation of (1). In-
stead, in regions close to the turbulence-generating grids,
this new scaling describes a transient process that the tur-
bulence goes through until it reaches equilibrium at loca-
tions sufficiently far downstream of the grid, where the dis-
sipation scales according to (1). Nonetheless, the fact that
Cε should follow the same scaling for different flows, in
regions where the turbulence has not reached an equilib-
rium between the large and small scales (the so called non-
equilibrium scaling) warrants further investigation.

The aim of this work is to study experimentally the
scaling behaviour of turbulent flows that are actively per-
turbed and hence are not at equilibrium. This study uses an
active grid to periodically force the flow and provide a novel
insight into the dynamic response of turbulence. This al-
lows the extension of the results from previous DNS studies
and the investigation of phase-averaged turbulence quanti-
ties to identify any changes in the scaling behaviour.

EXPERIMENTAL SETUP
The active grid used in this study was designed by

Hearst & Lavoie (2015), and is shown here in Figure 1.
It uses a double-mesh design where half of the wings are
mounted onto one plane, and the other half are mounted on
the other in an alternating pattern. The streamwise separa-
tion between the two meshes is 40 mm. A total of 254 solid
square wings are mounted onto rods which are 6.35 mm in
diameter and spaced 80 mm apart resulting in a mesh length
M = 80 mm. The total number of rods is 50, with 20 hori-
zontal and 30 vertical rods evenly divided between the two
meshes. Each rod is connected to an Applied Motion Prod-
ucts STM23S-3RN stepper motor that is driven through se-
rial commands from two RS-485 serial ports.

The active grid was actuated in one of two modes for
this study. The first (termed M1) involves the approxima-
tion of an instantaneous open/close motion at a specified
frequency and wing angle, with stop times enforced when
the wings are in an open orientation, similar to Reinke et al.
(2017). Instantaneous motion was approximated by operat-

Figure 1: Active grid mounted to test section, stepper
motors are shown around the perimeter of the grid in
black.

ing the grid at a speed that is below the operational limit
of the stepper motors and that is negligible compared to
the speed at which the flow in the tunnel adjusts to the os-
cillations. The second mode (M2) involves all grid wings
completing full rotations at a desired frequency in order to
produce a periodic freestream velocity.

The wind tunnel used to conduct all experiments is the
low-speed recirculating wind tunnel in the Flow Control and
Experimental Turbulence (FCET) lab at the University of
Toronto Institute for Aerospace Studies. The wind tunnel
has a hexagonal cross-sectional area that is 1.2 m wide and
0.8 m high. The total test section length is 5 m while the
length of the entire wind tunnel circuit is approximately
40 m. Without any grids in place, the maximum reported
freestream speed is 40 m/s with a turbulence intensity of
0.08%.

Velocity measurements were taken downstream of the
grid at a streamwise distance of x/M = 26 using constant
temperature anemometry. The anemometers were designed
and manufactured at the University of Newcastle (Miller
et al., 1987) and an overheat ratio of 1.6 was used. Dantec
single-wire probes and probe holders were used, and the hot
wires were made in-house with 5µm tungsten wires with a
1 mm sensing length. Calibration of the hot-wires was done
in-situ with the grid in a fully open configuration. Twelve
reference velocities were used for calibration and were ob-
tained using a pitot-static tube placed downstream of the
grid. The velocities and hot-wire voltages measured were
fit with a fourth-order polynomial.

Data was acquired using a National Instruments (NI)
PCIe-6259 data acquisition card and NI BNC-2110 connec-
tor block. The filter frequency for the hot-wire signals was
determined by conducting sample runs without filter and
identifying the position of the noise floor on the power spec-
tral density. Consequently, runs at mean speeds of 4 m/s and
7 m/s were filtered at 2.8 kHz and sampled at 8 kHz, while
runs at 10 m/s were filtered at 5.2 kHz and sampled at 12
kHz.

Bias uncertainties were calculated using the method-
ology presented by Jørgensen (2002). The random uncer-
tainty on the mean flow velocity is given by

δū = 1.96
σu√

N
, (4)

assuming a 95% confidence interval, where σu is the stan-
dard deviation of u(t), and N is the number of independent
samples in the measurement. Similarly, for phase averaged
quantities, random uncertainties are estimated using (4), but
with the standard deviation taken over a phase averaged
window. Uncertainty on the root mean square (RMS) value
of the velocity fluctuations is (Benedict & Gould, 1996)

δuRMS = 1.96

√
u′2

2N
, (5)

which assumes an approximately Gaussian velocity distri-
bution. The bootstrapping algorithm (Benedict & Gould,
1996) was used to calculate uncertainties on other quanti-
ties, such as derivatives. Sampling times ranged from 10
to 35 minutes for each test case depending on the desired
frequency of the produced flow, where higher frequencies
required a shorter time for the statistics to converge. Total
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uncertainties typically varied between ±4.5% and ±5.5%
on the mean, RMS and peak velocities. At the lower fre-
quencies, the uncertainty gets as high as ±7% due to the
lower number of cycles sampled.

Using the triple decomposition method, the measured
velocity is expressed as

u(t) = ū+ ũ(t)+u′(t), (6)

where ū is the mean velocity, ũ represents the periodic com-
ponent and u′ represents the stochastic or turbulent compo-
nent.

The periodic component ũ(t) is computed via a phase
average viz.

ũ(t) =
1

NT

NT

∑
n=0

u(t +nT ), (7)

where T represents the period of the signal under consider-
ation, and NT is the total number of periods within ts. Fi-
nally, the stochastic component is obtained by subtracting
the mean and periodic components from the total velocity.

The final result of the triple decomposition process is
shown in Figure 2. The amplitude of the velocity signal
is determined from ũ(t), while turbulence statistics can be
extracted from u′(t). The dominant flow frequency, which
arises due to the rotation of the grid wings at a certain de-
sired frequency, can be determined by examining the power
spectral density E( f ) of u(t). For instance, varying the grid
area at 1 revolution per second causes a peak in the power
spectral density (PSD) at 1 Hz, as shown in Figure 3. Fur-
thermore, the triple decomposition method attenuates the
dominant flow frequency as also shown in the spectrum of
u′(t) in Figure 3.

RESULTS
Using the method of triple decomposition discussed

earlier, the turbulent kinetic energy (TKE) budget is as-
sessed by substituting this decomposition into the momen-
tum equation. It is assumed that the mean velocity does
not vary in time and that the flow is spatially homogeneous,
which results in the gradients of the mean and periodic ve-
locities to be equal to zero. The simplified equation is given
as

〈
Dk
Dt

〉
=

〈
−u′i

1
ρ

∂ p
∂xi
−u′j

∂
( 1

2 u′2i
)

∂x j

〉
− ũ j

〈
∂
( 1

2 u′2i
)

∂x j

〉

+

〈
ν

∂

∂x j

(
∂
( 1

2 u′2i
)

∂x j

)〉

+

〈
−u′i

∂ ũi

∂ t

〉
−

〈
ν

(
∂u′i
∂x j

)2
〉

,

(8)
where k is the TKE and 〈·〉 denotes a phase average. In
fact, (8) is very similar to the transport equation obtained
by Reynolds & Hussain (1972), where the first three terms
on the right-hand side denote the transport of TKE due to
pressure, the oscillating velocity and viscosity respectively.
The last term denotes the dissipation rate of TKE. The main
result obtained from (8) is the second to last term which
represents the coupling between the periodic and stochastic

Figure 2: Triple decomposition of velocity signal us-
ing M2 into mean, periodic and stochastic compo-
nents for a mean flow velocity of 4 m/s and a fre-
quency of 0.25 Hz.

Figure 3: Comparison of power spectral density for
u(t) and u′(t) at a mean flow velocity of 4 m/s and a
frequency of 1 Hz.

components of the flow. Therefore, it is thought that this
term contributes to the production of TKE by means of the
interactions between the turbulent and oscillating compo-
nents of the velocity. Furthermore, it depends on the fre-
quency and amplitude of the imposed periodic fluctuations,
through the time derivative term.

The effect of the grid operating parameters is investi-
gated. Results show a clear modulation of the turbulence
intensity during the two modes of operation of the grid, as
seen in Figure 4. In M1 at a flow frequency of 0.1 Hz (Fig-
ure 4(a)), the rapid flow deceleration between 6.25 s and
7.5 s causes more overshoot in turbulence intensity than the
slower acceleration between 1.25 s and 5 s. On the other
hand, increasing the flow frequency to 0.5 Hz, causes the
flow to approximate a triangular variation in time. As a
result, the flow acceleration and deceleration are approxi-
mately equal. This is reflected by the similar overshoots
in turbulence intensities at 0.75 s and 1.6 s in Figure 4(b).
Similar behaviour is observed for the periodic flow velocity
generated in M2 in Figures 4(c) and (d). Therefore, this ob-
servation provides evidence that the term

〈
−u′i

∂ ũi
∂ t

〉
alters

the TKE budget during a flow period.

The effect of the flow frequency in the two modes on
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(a) (b)

(c) (d)

Figure 4: Phase variation of the periodic velocity component and turbulence intensity for (a) M1 at 0.1 Hz, (b) M1
at 0.5 Hz, (c) M2 at 0.1 Hz and (d) M2 at 0.5 Hz at a mean velocity of 4 m/s.

the phase variation of Cε , which is given by

〈Cε 〉=
〈ε〉〈L〉
〈u′〉3

, (9)

is also investigated. In the preceding expression, 〈ε〉 is esti-
mated viz.

〈ε〉= 15ν

〈(
∂u′

∂x

)2
〉

=
15ν

ū2

〈(
∂u′

∂ t

)2
〉

, (10)

where Taylor’s frozen flow hypothesis is employed in or-
der to estimate ∂u′

∂x . Similarly, the phase averaged integral
length scale is calculated using

〈L〉= 〈ũ〉
∫

∞

0
Ru′u′(t)dt, (11)

where Ru′u′(t) is the autocorrelation function based on u′(t),
with the phase averaged velocity over one period being used
as the convective velocity instead of the mean velocity (Ka-
halerras et al., 1998). Furthermore, the integral time scale,
tx, of u′(t) is assumed to be constant since the majority of
the sampled periods exhibited minimal variations in their

time scale as shown in Figure 5. Additionally, the time scale
obtained for u′(t) is roughly 0.01 s, which is much less than
the time scale of the imposed oscillations, and so u′(t) and
ũ(t) are effectively decoupled. The resulting phase varia-
tion of Cε for different flow frequencies is shown in Figure
6. It is apparent that Cε shows appreciable fluctuations over

Figure 5: Variation of integral time scale for each flow
excitation period at 4 m/s for different flow frequen-
cies.
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Figure 6: Phase variation of Cε at 4 m/s for different
flow frequencies.

Figure 7: Phase variation of Cε/
√

ReM with Reλ dur-
ing M1 and M2 for different freestream speeds and
flow frequencies. Results from mode M1 are inten-
tionally offset for clarity.

time, which is in agreement with the quasi-periodic fluctua-
tions observed by Goto & Vassilicos (2016a) in their DNSs.

Furthermore, based on (3), Cε/
√

ReM is plotted against
Reλ in Figure 7, where ReM is the grid Reynolds number. It
can be seen that the data from different cases follow closely
the scaling given in (3), which is consistent with the re-
sults of Goto & Vassilicos (2016a). However, Figure 7 also
shows that Cε exhibits a dependency on the frequency of
the oscillating flow. At the lower frequencies, the scaling
behaviour varies throughout the duration of one period be-
tween the classical Taylor dissipation law (having constant
Cε ) and the new scaling identified in (3). This is shown
more clearly for the 7 m/s and 0.1 Hz case in Figure 8,
where the constant region of Cε corresponds to regions of
fairly constant flow acceleration. Therefore, it is possible
here that the lower flow frequencies offer a greater duration
for the flow to respond to the imposed oscillations and reach
the critical time identified by Goto & Vassilicos (2016b) at
which Cε becomes constant, before the flow cycle continues
and causes a shift to the Reλ dependent scaling again.

CONCLUSION
A renewed interest in the scaling of the turbulent ki-

netic energy (TKE) dissipation rate has been documented
recently in literature due to several observations of a de-
parture from the classical constant Cε scaling first reported
by Taylor (1935). Numerous studies have experimentally
and numerically shown a dependency of Cε on the local
Reynolds number Reλ defined on the Taylor microscale.
While this does not constitute a fundamental departure
from Taylor’s classical scaling theory (see Hearst & Lavoie
(2014) and Isaza et al. (2014)), it nevertheless suggests that
the TKE scaling has a consistent transient behaviour that
culminates in the steady-state scaling of Taylor (1935).

In this study, an active grid was used to produce un-
steady flows approximating step changes in velocity and
periodic variations. It was observed that the turbulence in-
tensity of the flow shows considerable modulation over the
course of a velocity cycle, whereby higher flow acceler-
ations caused a greater overshoot in turbulence intensity.
This was thought to be due to the coupling between the
stochastic and periodic components of the flow as demon-
strated through the TKE budget equation for periodic flows.
Cε also showed phase-averaged variations which are in
agreement with the quasi-periodic fluctuations observed by
Goto & Vassilicos (2016a). Additionally, a similar depen-
dency of Cε on Reλ as that reported in recent literature was
clearly illustrated for the higher flow frequencies, while at
lower frequencies the Cε scaling alternated between having
a constant value and having a Reλ dependency.
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