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ABSTRACT
An unsupervised machine-learning algorithm, the self-

organizing map (SOM), has been used to identify the tur-
bulent boundary layer (TBL) and non-TBL regions in by-
pass transition (Wu et al., 2019). In that study it was found
that the SOM can successfully distinguish the near wall
turbulence region from the free stream turbulence in the
outer flow and the laminar streaky structures in the lami-
nar/transition portion near the wall without choosing detec-
tor flow variables or thresholds. The turbulent boundary
layer interface (TBLI) separating the TBL and non-TBL
regions can be represented as a hyperplane in the high-
dimensional space of the input features used by the SOM.

The prior study applied the SOM on the full-resolution
DNS data. With an interest to applications in wall model-
ing for large eddy simulations (LES), in this paper the use
of SOM is applied to Gaussian-filtered data in transitional
boundary layer. Various approaches are compared and it is
found that when using the full 15-dimensional inputs, the
hyperplanes representing the TBLI with unfiltered (DNS)
and filtered and coarsely-sampled (LES) data are almost
the same and yield good results in identifying the interface.
The results are not satisfactory, however, when using only
surface variables based on equilibrium wall modeling con-
cepts. It is concluded that unlike DNS, where only surface
information was sufficient to properly identify the TBLI’s
wall signature, in coarse-resolution wall modeled LES, data
characterizing the flow also away from the wall will be re-
quired to properly identify the wall signature of the TBLI.

INTRODUCTION
One of the most striking features of wall turbulence is

the turbulent boundary layer interface (TBLI), a surface that
separates near-wall turbulent boundary layer (TBL) regions
from the non-TBL regions, the latter of which include the
laminar boundary layer, laminar portions in the transitional
region and the outer flow that can be either nearly irrota-
tional or weakly turbulent. This TBLI has attracted interest
in the research community over decades (Corrsin & Kistler,
1955; Anand et al., 2009; Westerweel et al., 2009; de Silva
et al., 2013; Chauhan et al., 2014).

Since vorticity is a defining characteristic of turbulence
(Bisset et al., 2002; da Silva et al., 2014; Jahanbakhshi &
Madnia, 2016), it is often chosen as a detector flow vari-
able. Even so, deciding how to threshold such a variable is
challenging. Borrell & Jiménez (2016) normalized the vor-

ticity in a particular way so that the choice of the threshold
can be independent to the Reynolds number in the fully tur-
bulent region. However, using vorticity faces difficulties in
the transitional boundary layer, especially in the context of
bypass transition (Zaki, 2013) for the following reasons: (i)
the free-stream turbulence has vorticity which should not be
treated as the TBL region; (ii) the streaky structures in the
laminar/transition region which contain high wall-normal
vorticity also should not be counted as part of the near-wall
turbulent region; and (iii) the onset of turbulence is spo-
radic in space and time in the form of unique spots that re-
sult from various secondary instability mechanisms (Hack
& Zaki, 2016).

To overcome these difficulties, Nolan & Zaki (2013)
proposed a function based on the velocity fluctuations |v′|+
|w′| for bypass transition. Nevertheless, a single threshold is
not possible in this 3D flow. As a result, these authors had
to set different thresholds at different wall-normal heights
and rebuilt the 3D turbulent boundary layer structures plane
by plane. Lee & Zaki (2018) used a normalized vorticity
function to eliminated the free stream turbulence first, but
had to use a streamwise vorticity function to eliminated the
streaks later.

The choice of the threshold can be still difficult even if
a suitable detector flow variable has been selected. Usually,
the threshold is chosen within the plateau or minimum of
the PDF profile (da Silva et al., 2014; Lee et al., 2017).
However, the range of the plateau may be over one order of
magnitude (Borrell & Jiménez, 2016). Also in some cases
where no plateau or minimum is seen in the PDF profile,
selecting a threshold becomes a trial-and-error process and
often must rely on the researcher’s subjective judgment.

Recently, Wu et al. (2019) used an unsupervised ma-
chine learning algorithm, the self-organizing map (SOM)
(Kohonen, 2001), as an automatic classifier to detect the
TBLI in a transitional boundary layer with free stream tur-
bulence. The magnitudes of velocity, velocity fluctuations
and velocity gradients normalized by their standard devi-
ations are used as the input features to describe the flow.
There is no need to choose any particular functions (e.g.
normalized vorticity, or the combination of |v′| and |w′|)
and threshold it, which is an advantage of this method. It
has been shown the data points in the entire flow domain are
automatically classified into TBL and non-TBL regions by
the SOM, and what is more important is that the free-stream
turbulence and the near-wall streaky structures are classified
as the non-TBL region as desired. Thus the SOM identifies
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the turbulent-boundary-layer interface (TBLI) without the
usual need for choosing thresholds on e.g. vorticity or ve-
locity fluctuations. The TBLI is found to be a hyperplane in
the input space, and the hyperplane functions can be used to
very efficiently classify other instances of the same or sim-
ilar flow; for example, it was successfully applied to data
from the simulations by You & Zaki (2019) in order to sep-
arate a much higher Reynolds number turbulent boundary
layer (up to Reτ = 1000) from an energetic turbulent free
stream.

There are many uses to identify the TBLI: most ap-
plications have focused on fundamental questions such the
rates of entrainment, the mechanisms and scales responsi-
ble for accompanying engulfment processes, and the uni-
versality of the turbulence within the spot (Marxen & Zaki,
2019). Another application, which to date has not received
attention, is for large eddy simulations (LES). In wall-
modeled LES of transitional boundary layer flow, one ex-
pects that different wall models will be required depending
on whether an LES grid point is in a laminar portion of the
flow or inside turbulent spots of the fully turbulent region.
Typically the choice in modeling will require binary deci-
sions based on knowledge of in which region a particular
LES grid point is located. The question thus arises whether
the SOM identified from DNS can also be utilized in the
context of filtered (coarse-grained) variables such as filtered
velocity fluctuations and gradients.

After describing the data set used in this study and
summarizing the results from SOM applied to DNS data, we
present various analyses aiming at using SOM for filtered
variables to identify a the TBLI as it can be represented in
filtered fields and LES resolutions.

TRANSITIONAL BOUNDARY-LAYER DATA
The transitional boundary layer with free-stream tur-

bulence, simulated using DNS by Lee & Zaki (2018) and
stored in the FileDB system of the Johns Hopkins Turbu-
lence Database (JHTDB) (http://turbulence.pha.
jhu.edu) (Perlman et al., 2007; Li et al., 2008), is used in
this study, same as that in Wu et al. (2019). The flow config-
uration is shown in Figure 1 and more details about the sim-
ulation can be found at https://doi.org/10.7281/
T17S7KX8 and Wu et al. (2019). The TBLI identification
in this flow is difficult, because the free-stream turbulence
and the streaky structures in the laminar/transitional region
near the wall both contain non-negligible levels of vorticity,
and yet these regions should not be treated as part of the
near-wall turbulent region.

The streamwise, wall-normal and spanwise axes are
denoted as x, y and z, and the corresponding velocity com-
ponents are u, v and w. In the rest of paper, x, y and z are
normalized by the boundary layer thickness δ99 at the in-
let of the flow domain and the (·)+ designation represents
data normalized by uτ = 0.0444 at the streamwise location
x0 where the wall intermittency function is equal to 0.5 (i.e.
half of the time a point is within the wall turbulent region
and outside the other half). The kinematic viscosity is ν .
The grid is uniform in the x and z directions, and stretched
in the y direction. The grid spacing in the DNS and also
stored in the database is ∆x+ = 10.4, ∆y+min = 0.26 and
∆z+ = 4.2. For reference, the boundary-layer thickness at
x0 is δ99,x0 = 5.25, or δ

+
99,x0

= 186.5.

SELF-ORGANIZING MAP (SOM)
Using an SOM, Wu et al. (2019) showed successful

identification of the TBLI in the transitional boundary layer
flow described in the previous section. The SOM (Koho-
nen, 2001) is an unsupervised machine learning clustering
algorithm, which means models using unsupervised learn-
ing must learn relationships between elements in a data set
and classify the raw data without “help”. The data need not
be “labeled”, meaning that we do not need to know ahead
of time how to distinguish the flow regions. The SOM con-
sists of M nodes and in the present study M = 2 nodes were
used since we only wish to classify each point in the flow
as either TBL or non-TBL. Each of the nodes has a posi-
tion (“weight”) in the space of input vectors that need to
be classified. The SOM then iteratively finds the locations
of these M nodes in the input space that best “clusters” the
data around the nodes. And, a linear hyperplane based on
Euclidean distance in the data space is constructed to clas-
sify all points into belonging to either nodes.

In Wu et al. (2019) such an SOM was first tested on
a two-dimensional subdomain of the flow, namely the wall.
There, only three input variables were used, proportional
to the two components of the wall stress and the down-
stream distance x. In SOM, all input variables were nor-
malized by their root-mean-square (r.m.s.). The application
of the SOM to these input data yielded two clusters. One
clearly corresponded to the laminar region on the wall in-
cluding streaks signature, and the other was the fully turbu-
lent region. Then the SOM was applied to a fully 3D do-
main that included weak outer turbulence, streaky laminar
regions near the wall before transition to turbulence, patches
of turbulence, and the fully turbulent boundary layer. A 16-
dimensional input vector consisted of the following point-
wise variables: magnitudes of velocity, their fluctuations,
velocity gradients, and x and y position. SOM again clas-
sified the 16-dimensional data into two groups. Each point
in the flow was compared to the two nodal positions and,
depending on its (Euclidean) distance in the space of nor-
malized variables, classified accordingly. Visualizing the
resulting two regions and the TBLI between them, it was
evident that SOM classification results were consistent with
the visual appearance of the flow. The classification was a
hyperplane in 16-dimensional state space. It was observed
that the respective coefficients were all non-negligible. As
a result, it was concluded that none of the input variables
used were unimportant and thus could not be discarded.

In the present study, the SOM is applied to filtered data
to mimic data available in wall-modeled LES. Results are
then compared with the previous ones obtained from DNS.
We followed the procedure of SOM described in Wu et al.
(2019) and the “batch” version of SOM is used. In this
work, we only focus on the TBLI identification on a par-
ticular wall-parallel slice, i.e. with a constant y. Therefore
the y coordinates that were used in Wu et al. (2019) as part
of the input features is omitted here and only 15 variables
remain: they are the magnitudes of filtered velocity, filtered
velocity fluctuations and filtered velocity gradients as well
as the streamwise coordinate x. In contrast to Wu et al.
(2019) who used the original data generated from DNS to
compute the input features, this work uses filtered veloci-
ties to calculate the input features. The DNS data are first
interpolated onto a coarse and uniform grid with the grid
spacing ∆x+ = ∆y+ = ∆z+ = 10. The data are then filtered
with a Gaussian filter in the wall-parallel plane with the fil-
ter width ∆+ = 60. The velocity gradients are calculated on
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Figure 1. Flow configuration of the transitional boundary layer data set used in the present study. The main flow is in the x
direction. The structures are identified by the iso-surface of Q-criterion and colored by the wall-normal heights. The boundary
layer thickness δ99 is shown as the blue line.

this coarse grid. Finally, these input features are all normal-
ized by their own standard deviation.

Same to the previous study, the number of the clusters
is set to M = 2, with the expectation that two clusters will
represent the TBL and non-TBL regions in the filtered ve-
locity representation, respectively. After training, the SOM
would output the position of the two nodes in the input fea-
ture space. Those data points closer to one node in the input
space are classified as one group (say TBL), while the other
points are the other group (say non-TBL). Again, the bisect-
ing plane of the two nodes then corresponds to the TBLI.

RESULTS
Figure 2 shows the results at y+ = 40, which is at the

lower-bound of the log-law region and could correspond to
the location of the first grid-point away from the wall in a
wall-modeled LES. The TBLI identified by the SOM based
on the unfiltered data and the gradients calculated on the
original DNS grid, which is used as the reference result, is
presented in Figure 2 (a) and will be denoted as unfiltered-
SOM TBLI hereafter.

We can write the representation of the hyperplane func-
tion representing the unfiltered-SOM TBLI according to

∑
i

ci fi +1 = 0, (1)

where

ci = {−0.42,0.41,0.36,−0.05,0.41,0.34,−0.46,

−0.07,0.40,0.38,0.40,0.40,0.33,0.37,0.60}

are the coefficients of the input features (all are normalized
by their r.m.s.):

fi = {|u|, |v|, |w|, |u′|, |v′|, |∂u/∂x|, |∂u/∂y|, |∂u/∂ z|,
|∂v/∂x|, |∂v/∂y|, |∂v/∂ z|, |∂w/∂x|, |∂w/∂y|, |∂w/∂ z|}.

The data point would be categorized as TBL if ∑i ci fi+1 >
0, non-TBL otherwise. In Wu et al. (2019) the SOM was
applied simultaneously in the 3D domain and there all coef-
ficients were found to be relevant. Here, at the single plane
at y+ = 40, we find that the coefficients of |u′| and |∂u/∂ z|
are one order of magnitude smaller than others, which indi-
cates that |u′| and |∂u/∂ z| are less relevant in determining

the TBLI. This may be because at this height above the wall
|u′| and |∂u/∂ z| = |∂u′/∂ z| are appreciable in the streaks
and also within the turbulent boundary layer; as a result,
they are not good discriminators. The result shows that the
SOM has the ability to discover and disregard locally inef-
fective inputs.

Next, we apply the SOM to determine the hyperplane
using filtered input features and gradients calculated on a
coarsen grid. Specifically, now the input features are given
by

f∼ = {|ũ|, |ṽ|, |w̃|, |ũ′|, |ṽ′|, |∂ ũ/∂x|, |∂ ũ/∂y|, |∂ ũ/∂ z|,
|∂ ṽ/∂x|, |∂ ṽ/∂y|, |∂ ṽ/∂ z|, |∂ w̃/∂x|, |∂ w̃/∂y|, |∂ w̃/∂ z|}.

Again, each variable is normalized by its own r.m.s. The
result from the classification is shown in Figure 2 (b), and
will be denoted as filtered-SOM TBLI hereafter. The u and
ũ contours are also shown in (a) and (b) respectively. In both
plots, as desired, the streaky structures with streamwise vor-
ticity are not classified as TBL by the SOM. The visualiza-
tions of the TBLI confirm that the classification results are
consistent with the visual appearance of the flow in both
the cases of unfiltered data and filtered data. Figure 2 (c)
shows the comparison between the unfiltered-SOM TBLI
(in color) and filtered-SOM TBLI (black line) in a zoomed
region. The two interfaces are very close to each other. Al-
though the filtered-SOM interface is smoother than the un-
filtered one, it still retains significant spatial complexity and
details.

In the paper by Wu et al. (2019), the SOM method
with a hyperplane function trained from one snapshot was
successfully applied to another snapshot of the same flow
to determine the TBLI. The resulting TBLI was essentially
identical to that found by applying SOM to the latter snap-
shot directly. This was due to the fact that a single snapshot
contained sufficient samples to provide a (nearly) complete
state-space representation for training an accurate TBLI
identification model.

In the present context, one might wonder how a model
trained with unfiltered (DNS-level) data performs in the
case of filtered data in the LES context. Figure 3 shows
the TBLI obtained by applying the unfiltered-SOM TBLI
hyperplane to the filtered inputs: that is applying the hyper-
plane function Eq. 1 to the filtered input features. It is found
that the differences of this TBLI and the filtered TBLI are
negligible. This suggested the unfiltered-SOM TBLI and
the filtered-SOM TBLI should have the same hyperplane
functions: we find that the coefficients of the two hyper-
planes differ by about 5% (excluding the coefficients of |u′|
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(a) (b)

(c)

Figure 2. (a) u contour and unfiltered-SOM TBLI (black line) at y+ = 40. (b) ũ contour and filtered-SOM TBLI (black line)
at y+ = 40. (c) The comparison of unfiltered-SOM TBLI (color) and filtered-SOM TBLI (black line) zoomed in the region of
200 < x < 450 and 50 < z < 150. The tiny blue dot shows the filter width ∆+ = 60.

and |∂u/∂ z|, which are one order of magnitude smaller than
others).

We further test the performance of SOM on filtered in-
puts but with larger filter width. Figure 4 shows the re-
sults at y+ = 40 but for filter width of ∆+ = 200. Although
one could hardly identify the interface by visually check-
ing the contours directly with such a large filter, the SOM
provides acceptable TBLI identification in this case as well.
By comparing with the unfiltered-SOM TBLI, it is found
that the filtered-SOM TBLI roughly follows the shape of
the unfiltered-SOM TBLI, but as expected many details are
missing.

At the wall, in the DNS level SOM, the number of
SOM input features reduces to three (|∂u/∂y|, |∂w/∂y| and
x), because all other variables are zero. This approach also
gave good results and the TBLI’s intersection with the wall
appeared to be well predicted by the SOM applied to the
three-variable case.

In LES using a wall model, the wall shear stresses (or
vertical gradients |∂u/∂y|y=0, |∂w/∂y|y=0) are in principle
unknown and need to be modeled based on resolved infor-
mation, typically the LES velocity at the first (or second)
grid point away from the wall. The equilibrium wall model
uses the assumption of a locally valid logarithmic law and
solves for the wall stress based on the velocity at the grid
point away from the wall. Then the stress is essentially
proportional to the (square) of filtered velocity there. Thus
the unknown vertical gradients |∂u/∂y|y=0, |∂w/∂y|y=0 are
related to the filtered velocity components at the first grid
point away from the wall in LES. Thus, to mimic this be-
haviour and evaluate the performance of SOM in this sce-
nario, we use |ũ| and |w̃| and x as input variables, as wall
model surrogates of |∂u/∂y|y=0, |∂w/∂y|y=0 and x. The re-
sult is shown at Figure 5. As can be seen, this identification
method is entirely unsatisfactory. Specifically, it is found
that the streaky structures are now erroneously included in
the TBL region. This behavior is reminiscent of earlier find-
ings that motivated detector flow variables. Since the Kle-
banoff streaks are predominately streamwise velocity per-
turbations Nolan & Zaki (2013) constructed their detector
flow variables for the transitional boundary layer based on
the sum of the absolute values of the wall-normal and span-

wise fluctuation field, so as to exclude the streamwise com-
ponent. Clearly, using the equilibrium wall modeled in-
spired variables to characterize the TBLI at the wall does
not work. Instead, using full 15-dimensional 3D informa-
tion inside the flow near the wall does provide good results.

CONCLUSIONS
In the present study, we investigated the performance

of SOM-based TBLI identification in the context of large
eddy simulations. A DNS data set of transitional boundary
layer is used. The data are filtered with 2D Gaussian filter
in the wall-parallel plane and represented on a coarsened
grid which is uniform in all three directions. The velocity
gradients are evaluated on this coarse and uniform grid.

A horizontal plane in the log-law region is selected to
apply the SOM using the filtered data as input. Results show
that the streaky structures are not selected into the TBL re-
gion. The identification of TBLI is satisfactory when visu-
ally compared with the ũ contour. In addition, the filtered-
and unfiltered-SOM TBLI are almost the same, only that
the former is smoother, as can be expected in LES. Only a
few small structures are missing in the filtered-SOM TBLI
since the Gaussian filter removes these small features.

The hyperplane function obtained from training the
SOM on unfiltered DNS data is also applied on the filtered
data, and a satisfactory TBLI is obtained. In fact, by com-
paring this TBLI and the filtered-SOM TBLI, one could
hardly see any differences between the two. While using
the 15-dimensional input variables in the flow field near the
wall, a method inspired by wall modeling using variables
only ‘at’ the wall did not yield good results. We showed
that it is insufficient to use only ũ, w̃ and x as the input fea-
tures for the TBLI identification on a plane in the log-law
region (which using wall-modeling concepts could be inter-
preted as surrogates for the modeled wall stress): streaky
structures would be classified as TBL in this case. Hence,
results suggest that more information about the flow is re-
quired to properly distinguish between TBL and non-TBL
regions in such a flow.
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(a) (b)

Figure 3. (a) ũ contour at y+ = 40 and the TBLI (black line) obtained by applying unfiltered-SOM TBLI model to the filtered
inputs. (b) The comparison of filtered-SOM TBLI (color) and the TBLI in (a) (black line) zoomed in the region of 200< x< 450
and 50 < z < 150. The small blue dot shows the filter width ∆+ = 60.

(a) (b)

Figure 4. (a) ũ contour and filtered-SOM TBLI (black line) at y+ = 40. (b) The comparison of unfiltered-SOM TBLI (color)
and filtered-SOM TBLI (black line) zoomed in the region of 200 < x < 450 and 50 < z < 150. The blue bar shows the filter
width ∆+ = 200.

Figure 5. Filtered streamwise velocity (ũ) contours and filtered-SOM TBLI (black line) at y+ = 40. Inspired byu wall-modeled
LES using the equilibrium wall model, here only three variables are used as the input features: ũ, w̃ and x coordinates. The
filter width is ∆+ = 60.
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