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ABSTRACT 

Wall turbulence is a ubiquitous phenomenon in nature and 
engineering applications, yet predicting such turbulence is 
difficult due to its complexity. High-Reynolds-number 
turbulence, which includes most practical flows, is particularly 
complicated because of its wide range of scales. Although the 
attached-eddy hypothesis postulated by Townsend can be used 
to predict turbulence intensities and serves as a unified theory 
for the asymptotic behaviours of turbulence, the presence of 
attached structures has not been confirmed. Here, we 
demonstrate the logarithmic region of the turbulence intensity 
by identifying wall-attached structures of streamwise velocity 
fluctuations through direct numerical simulation of a moderate-
Reynolds-number boundary layer. The wall-attached structures 
are self-similar and composed of multiple uniform momentum 
zones. The population density of the structures scales inversely 
with their height, which is reminiscent of the hierarchy of 
attached eddies. These findings suggest that the identified 
structures are prime candidates for Townsend’s attached eddy 
and serve as cornerstones for understanding the multiscale 
phenomena of high-Reynolds-number boundary layers. 

 
 

INTRODUCTION 
Understanding wall-bounded turbulent flows is a long-

standing challenge because of their complex and chaotic nature. 
The presence of a wall not only induces the formation of a thin 
shear layer close to the wall known as the turbulent boundary 
layer (TBL), where most of the energy consumption occurs in 
modern vehicles and pipelines, but also separates the TBL into 
different layers composed of multiscale fluid motions. These 
multiscale phenomena can be characterized in terms of the 
friction Reynolds number (Reτ = δuτ/ν), which is the ratio of the 
viscous length scale ν/uτ (ν is the kinematic viscosity, and uτ is 
the friction velocity) and the flow thickness δ. Although much 
progress has been achieved in characterizing the onset of 
turbulence (Hof et al. 2004; Avila et al. 2011) and fully 
turbulent flows at low Reτ (Kawahara et al. 2012), little 
progress has been made in the case of high Reτ turbulence 
(Smits et al. 2011; Jiménez 2012; Barkley et al. 2015), which 
arises in engineering devices and atmospheric winds (Reτ = 
O(104–6)), due to the wide range of scales that govern the 
transport of mass, momentum and heat. 

To elucidate these multiscale phenomena, one approach is 
to examine the organized motions that retain their spatial 
coherence for relatively long periods, known as eddies or 
coherent structures, because these structures are responsible for 
the dynamical mechanisms and turbulence statistics (Robinson 
1991; Adrian 2007; Jiménez 2018). The dominant coherent 
structures in the buffer layer are low-speed streaks and quasi-

streamwise vortices (Kline et al. 1967) that are generated via a 
self-sustaining cycle (Hamilton et al. 1995). Above the buffer 
layer, the coherent structures are larger and more complex due 
to the presence of various scales. In this region, the mean 
streamwise velocity ( U ) follows a logarithmic profile along y 
(Millikan 1938): 

1 ln( ) ,U y A
                                   (1) 

where / ,U U uτ
+
=  y+ = uτy/ν, κ is the von Kármán constant, A 

is the additive constant, and the overbar indicates an ensemble 
average. The logarithmic profile in Eq. (1) represents that the 
only relevant scales in this region are the wall-normal distance 
(y) and uτ. At high Reynolds numbers, most of the bulk 
production and velocity drop originate from the logarithmic 
layer (Smits et al. 2011; Jiménez 2012). Townsend (1976) 
deduced a model for energy-containing eddies in the 
logarithmic layer whose size scales with y; these structures are 
‘attached’ to the wall and self-similar. By assuming that the 
logarithmic layer consists of the superposition of the attached 
eddies and that the variation of the Reynolds shear stress across 
the layer is small compared to the viscous stress, the 
streamwise turbulence intensity is expressed as 

2
1 1 ln( / ),u B A y δ

+
= −                            (2) 

where A1 and B1 are constant. Perry & Chong (1982) extended 
this hypothesis by introducing hierarchies of geometrically 
similar eddies with the probability distribution function (PDF) 
that is inversely proportional to their height. Additionally, they 
predicted the emergence of a kx−1 (kx is the streamwise 
wavenumber) region in the spectrum that is the spectral 
signature of the attached eddies. In this regard, the attached-
eddy hypothesis is a unified theory that links the asymptotic 
behaviors of the turbulence statistics of high-Reynolds-number 
flows. 

Subsequently, several studies (Perry et al. 1986; Perry & 
Marusic 1995; Marusic 2001) have refined the model of Perry 
& Chong (1982) to test Townsend’s hypothesis, but the 
Reynolds numbers are not sufficiently high enough to establish 
the logarithmic region. Recently, advanced measurements 
confirmed the presence of the kx−1 region (Nickels et al. 2005) 
and the coexistence of logarithmic regions for U  and 2u  at 
Reτ = O(104-5) (Hultmark et al. 2012; Marusic et al. 2013). 
However, the central question that has not been resolved is as 
follows: what is the actual structure in the fully turbulent flow 
that accords with an attached eddy and forms the logarithmic 
region? Although Townsend (1976) and Perry & Chong (1982) 
proposed a particular shape of eddies based on the flow 
visualization results, these structures are modeled to formulate 
the inverse-power-law PDF and the constant shear stress. 
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Figure 1. Clusters of streamwise velocity fluctuations (u) in turbulent boundary layer at Reτ = 980. (a) Isosurfaces of 
positive- (red) and negative-u clusters (blue), u(x) = ±1.5urms(y, δi), in the instantaneous flow field; δi is the height of the 
instantaneous turbulent/non-turbulent interface (TNTI). The brightness of the color indicates the wall distance. Here, the 
clusters, which cross the edges of the streamwise and spanwise domains, are excluded to represent the size of each cluster 
completely. (b) Schematic illustration of a u cluster in the cross-stream plane. The minimum (ymin) and maximum (ymax) 
wall distances of the individual cluster are shown. (c) The number of u clusters per unit wall-parallel area as a function of 
ymin and ymax. (d) Isosurfaces of wall-attached structures extracted from (a). The inset shows a magnified view of an 
attached negative-u structure that enclosed by the black box in the full domain. (e) Isosurfaces of detached structures 
extracted from (a). 

Additionally, the kx−1 region does not necessarily indicate the 
attached structure, because one coherent motion can carry the 
energy with a broad range of wavenumbers (Nickels & Marusic 
2001) and the wavenumber at a given y does not reflect 
whether that motion is attached to the wall or is part of a 
detached one (Jiménez 2013).  

To overcome these limitations, clusters of vortices (del 
Álamo & Jiménez 2006) and three-dimensional 
sweeps/ejections (Lozano-Durán et al. 2012) were identified in 
direct numerical simulation (DNS) of channel flows. These 
structures can be classified as either wall-attached or wall-
detached. The former are self-similar and statistically dominant 
structures in the logarithmic layer. Hwang (2015) showed the 
self-similar motions with respect to y in a large-eddy 
simulation, which restricts the spanwise length scale of motions. 
Using a proper orthogonal decomposition, Hellström et al. 
(2016) found that the azimuthal length scales of the energetic 
modes are proportional to the distance from the wall. In 
addition, Baars et al. (2017) reported the self-similar region in 
the linear coherence spectrum where the coherence magnitude 
is quantified in a single streamwise/wall-normal aspect ratio. 
Although these identified coherent motions are reminiscent of 
Townsend’s attached eddy in a sense of self-similarity, it has 
not been shown how these structures contribute to the 
logarithmic behavior of 2u . 

Here, we show the logarithmic region of 2u   by identifying 
the wall-attached clusters of streamwise velocity fluctuations 
(u) from DNS data of zero-pressure-gradient TBL at Reτ ≈ 1000. 
We focus on u clusters because long negative-u regions are 
associated with the net Reynolds shear force (Hwang et al. 
2016a), and because the outer negative-u structures extend to 
the wall and interact with the near-wall streaks during the 

merging of the outer structures (Hwang et al. 2016b). We find 
that a group of u clusters over a wide range of scales is attached 
to the wall and self-similar. With these attached clusters, we 
can reconstruct the streamwise turbulent intensity from the 
superposition of the identified structures. 
 
 
NUMERICAL DETAILS 

The DNS data of the TBL (Hwang & Sung 2017; Yoon et 
al. 2018) are used in the present study. The DNS was 
performed using the fractional step method of Kim et al. (2002) 
to solve the Navier–Stokes equations and the continuity 
equation for the incompressible flow: 

0

1 ,
Re

i i
i j

j i j j

U P uU U
t x x x xδ

∂ ∂ ∂ ∂ ∂
+ = − +

∂ ∂ ∂ ∂ ∂
            (3) 

0.i

i

U
x

∂
=

∂
                                          (4) 

Here, all terms are normalized by the inlet boundary layer 
thickness δ0 and the free-stream velocity U∞. The inlet 
Reynolds number is defined as 

0 0Re /Uδ δ ν∞= . The no-slip 
boundary condition is applied at the wall, and the top boundary 
condition is , / 0, and 0U U V y W∞= ∂ ∂ = = . In the spanwise 
direction, periodic boundary conditions are imposed. The 
convective boundary condition is applied at the exit. The 
inflow condition is set as a superposition of the Blasius velocity 
profile and the isotropic free-stream turbulence. The free-
stream turbulence is generated by the Orr-Sommerfeld and 
Squire modes in the wall-normal direction and Fourier modes 
in time and in the spanwise direction (Jacobs & Durbin 2001). 
The computational domain is 2,300δ0 × 100δ0 × 100δ0 in the 
streamwise (x), wall-normal (y) and spanwise (z) directions, 
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Figure 2. Uniform momentum zones in the attached structures of u. (a) Contour of the instantaneous streamwise velocity 
(U) in the x–y plane at z/δ = 0.26; U∞ is the free-stream velocity. The blue line is a slice of the object identified in figure 
1(d). The black line indicates the TNTI. The inset shows a comparison of the instantaneous (solid line) and mean (dashed 
line) streamwise velocity profiles at x/δ = 9.8 (indicated by the vertical dashed line in the contour). The horizontal dotted 
lines indicate step-like jumps of instantaneous velocity across the structure, which separate the zones of roughly constant 
U, known as uniform momentum zone (UMZ) [29]. (b) Histogram of U in the cross-stream plane of the identified object at 
x/δ = 9.8, which contains the two distinct local maxima (at U/U∞ ≈ 0.5 and 0.6) that are associated with possible UMZs. 
The grey line shows the probability density function (PDF) of U within the identified object and the orange circles indicate 
the local maxima. The inset shows the joint PDF of the height (ly) and the number of UMZs (np). The inserted dots indicate 
the mean np with respect to ly. The contour levels are logarithmically distributed. Here, the superscript + denotes scaling 
with the viscous scale. 

respectively. Given that the intermittent region appears at the 
turbulent/non-turbulent interface (TNTI), we define u 
( ( , )iU U y δ= − ) by considering the height of the local TNTI 
(δi) to minimize the contamination of the fluctuations at the 
TNTI (Kwon et al. 2016). This decomposition can precisely 
detect the tall structures that span δ. The clusters of positive 
and negative u are the groups of connected points satisfying 
|u(x)| > αurms (y, δi), where urms is the root mean square of u and 
α is the threshold. To characterize the irregular shapes of the u 
clusters (figure 1a), the connectivity of u was defined based on 
the six orthogonal neighbors of each node in Cartesian 
coordinates (del Álamo & Jiménez 2006; Lozano-Durán et al. 
2012). Using the connectivity rule, the contiguous points are 
determined at a given node. As a result, we could determine the 
sizes of each cluster and the velocity information over a 
bounded volume of each object without making an a priori 
assumption or applying a filter. The threshold α = 1.5 was 
chosen based on a percolation transition of the clusters; the 
results remained qualitatively unchanged within the transition; 
see Appendix in Hwang & Sung (2018) and Hwang & Sung 
(2019). 

 
 

RESULTS AND DISCUSSION 
The population density of clusters according to their 

minimum and maximum y (ymin and ymax) shows two distinct 
regions (figure 1c), yielding that the clusters are classified into 
two groups; wall-attached structures with ymin ≈ 0 (figure 1d) 
and detached structures with ymin > 0 (figure 1e). The height of 
the attached structures (ly = ymax − ymin ≈ ymax) varies from the 
near-wall region to δ and they contribute 64% of the total 
volume of the clusters. In addition, each individual attached 

structure is composed of multiple uniform momentum zones 
(UMZs) in which U is roughly constant (Meinhart & Adrian 
1995). As illustrated in figure 2(a), the sample attached 
structure extends from the wall to y ≈ 0.8δ and in particular, the 
profile of U at x/δ = 9.8 (inset in figure 2a) shows several 
jumps in velocity across the structure (indicated by dotted 
horizontal lines), separating zones of roughly uniform U. The 
UMZs produce local maxima in the histogram of U (Adrian et 
al. 2000). Figure 2(b) shows the histogram of U in the cross-
stream plane of the identified structures at x/δ = 9.8. Although 
there are several local maxima, the two at U/U∞ ≈ 0.5 and 0.6, 
which are the consequence of UMZs, are preserved when the 
data are accumulated over the entire structure (grey line). As 
shown in the inset of figure 2(b), the number of UMZs in each 
structure increases with increasing ly, representing the 
hierarchical nature of attached structures (Perry & Chong 1982; 
de Silva et al. 2016). Moreover, these attached structures are 
geometrically self-similar. The distributions of their length (lx) 
and width (lz) with respect to ly (figure 3a,b) show two distinct 
growth rates. For the buffer-layer structures (ly+ < 60), lx and lz 
increase gradually whereas those of the taller structures (ly+ > 
100) grow rapidly until ly is bounded by δ. For ly+ > 100, the 
mean lx and lz (circles) scale with ly, representing a strong 
tendency for the self-similarity over a broad range, although 
there is some dispersion at a given ly. Since the mean lx and lz 
indicate the sizes of representative structures, the dispersion 
would be associated with hierarchies at different stages of 
stretching (Perry & Chong 1982). Although the mean lx is not 
linearly proportional to ly, the inclination angle of the structures 
ranges from 8.8° to 16°; this trend is similar to the inclination 
angle of hairpin packets (Adrian et al. 2000). The mean lz 
especially follows a linear law lz+ ≈ ly+, indicating that the 
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Figure 3. Self-similarity of attached structures and their population density. (a,b) Joint PDFs of the logarithms of the sizes 
(lx and lz) of the attached structures and of the height (ly). The inserted dots indicate the mean lx and lz with respect to ly. (a) 
The solid line is the best fit, lx

+
 ~ (ly

+)γ1 with γ1 = 0.745 of the data for 100 < ly
+ < 550. (b) The dashed line is lz

+ = 1.04ly
+ 

and the solid line is the best fit, lz
+

 ~ (ly
+)γ2 with γ2 = 0.949 of the data for ly

+ > 100. The contour levels are logarithmically 
distributed. (c) Population density of the attached clusters (ns) with respect to their height ly. The dashed line is ns ~ (ly

+)−1 
and the solid line is the best fit, ns ~ (ly

+)β with β = −1.001 of the data for 290 < ly
+ < 550. The inset shows a magnified view 

of the shaded region.  

spanwise length scale of the structures is proportional to the 
distance from the wall. 

The population density of the attached u structures versus ly 
is examined to determine whether the attached structures are 
associated with the hierarchy length scales (Perry & Chong 
1982; Perry et al. 1986). In figure 3(c), the distribution decays 
with ly beyond the buffer layer, and in particular, it is inversely 
proportional to ly for 290 < ly+ < 550 (shaded region). Given the 
inverse-power-law PDF of hierarchy scales (Perry & Chong 
1982) and the multiple UMZs in the attached structures of u 
(figure 2), the structures in the shaded region are hierarchies of 
self-similar eddies. Furthermore, a peak is evident at ly+ ≈ 800, 
indicating the additional weighting for the large-scale 
structures. In other words, these large-scale structures are not 
geometrically self-similar in connection with the protrusions 
around ly+ = δ+ in figure 3(a,b). This behavior is consistent with 
the modified PDF of hierarchy scales (Perry et al. 1986), which 
was proposed to enable the more accurate prediction of the 
mean velocity defect and energy spectra. 

The question then arises: does these attached structures 
actually form the logarithmic variation of 2u ? To answer this 
question, the streamwise turbulence intensity carried by 
attached structures with different heights 2 ( , )a yu y l  is defined as 

 2 1( , ) ( ) ( ) ,
( , )

a

a y
a y

S

u y l u u dxdz
S y l

  x x               (5) 

where Sa is the wall-parallel area of the structures with ly at a 
given y and the angle brackets denote an ensemble anverage. In 
figure 4(a), the logarithmic region arises at ly+ > 120 and this 
region extends with increasing ly. Although the magnitude of 

2
au  is larger than that of 2u  because the extracted structures 

are defined as |u| > 1.5urms, this result is remarkable considering 
the Reynolds number of the present TBL (Reτ = 980); the 
logarithmic behavior of 2u  was observed at Reτ = O(104-5) in 
experiments (Hultmark et al. 2012; Marusic et al. 2013). 
Intriguingly, there is a logarithmic increase of the peak 2

au  
with ly+ in 100 < ly+ < 550 with a slope of 0.665 (see the inset in 
figure 4a). This result is in good agreement with the results for 
the slope of the increase in the peak 2u  versus Reτ obtained in 
a recent DNS 0.65 (Sillero et al. 2013) and in an experiments 
0.63 (Marusic et al. 2017). Given the roots of attached 
structures, this agreement suggests that the identified structures 
are particularly important for predicting near-wall turbulence. 
In addition, the superposition of 2

au  ( 2
asu ) over 290 < ly+ < 550 

is presented in figure 4(b). Here, 2
asu  was computed by 

weighting the relative probability of the structures to the 
corresponding 2

au . To confirm the logarithmic variation of 2
asu , 

the indicator function y∂ 2
asu

+
/∂y, which is constant in the 

logarithmic region, is also plotted. A plateau appears in 100 < 
y+ < 0.18δ+, verifying the presence of the logarithmic region 
formed by the attached structures.  

 
 

CONCLUSIONS 
We have demonstrated for the first time that the wall-

attached structures of u are energy-containing motions 
satisfying the attached-eddy hypothesis, not only because they 
are self-similar to ly, but also because there are three strong 
pieces of evidence: (i) the increase of the number of UMZs, 
identified within the wall-attached structures, with ly, (ii) the 



11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11) 
Southampton, UK, July 30 to August 2, 2019 

 

5 
 

y/δ

u a2+

10-3 10-2 10-1 1000

10

20

30
ly
+ =

55
70
90

120
150
200
250
310
380

550

40

490

(a)

ly
+

u2+

101 102 103

20

30 Slope = 0.66

m
ax

0.1 0.2
-5
0
5

y/δ

u as2+ Ξ

10-3 10-2 10-1 1000

10

20

30

-10

0

10

20
Ξ = −3.010

(b)

Ξ
uas

2+

 
Figure. 4. Logarithmic behavior of the streamwise turbulence intensity carried by attached structures. (a) Wall-normal 
variations of the streamwise turbulence intensity ( 2

au ) within the attached structures of u for various ly. The dashed line 
corresponding to the logarithmic variation is a guide for the eye. The inset shows the dependence of the peak magnitude of 

2
au  on ly. The solid line is the best fit, 2

maxu
  = 0.66ln(ly

+) + 23.1, of the data for 100 < ly
+ < 550. (b) Superposition of 2

au  
carried by the attached structures with a population density that is inversely proportional to their height (290 < ly

+ < 550 in 
figure 3b), 2

asu . The blue dot indicates Ξ = y∂ 2
au
 /∂y, which is the indicator function of the logarithmic law. The inset shows 

a magnified view of the region where there is a plateau (Ξ = −3.010) in the range 100 < y+ < 0.18δ+ (shaded region). The 
dashed line corresponds to 2

asu
  = −3.010ln(y/δ) + 7.3. Here, 2

asu  and Ξ are plotted up to y+ = 290. 

inverse-power-law PDF, and (iii) the logarithmic variation of 
2u . Although we identified the attached structures in a TBL 

for a single Reynolds number, their hierarchical features will 
ensure their presence in high-Reynolds-number flows. We 
anticipate that examining the Reynolds-number effects on 
attached structures will improve the predictive model and 
exploring their dynamics will facilitate deeper insights into the 
multiscale energy cascade of wall turbulence. 
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