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ABSTRACT
There has been much recent progress with regards to

characterizing self-similar behavior in wall turbulence in
experiments, simulation, and in the mean and instantaneous
forms of the Navier-Stokes equations. This paper considers
some commonalities and differences between these obser-
vations, and in particular addresses the inconsistency be-
tween the attached eddy hypothesis (AEH) and self-similar
scaling of the resolvent operator governing the linear dy-
namics of the Navier-Stokes equations. Low-rank repre-
sentations of the velocity field from resolvent analysis are
exploited to investigate self-similar and self-sustaining pro-
cesses in wall turbulence, their signatures and limitations in
physical and spectral space.

INTRODUCTION
The seminal distance-from-the-wall scaling proposed

by Townsend (1951) has underpinned many theoretical and
observational descriptions of wall turbulence. The original
argument posits that eddies with diameters proportional to
distance from the wall should be required in order to obtain
a dissipation length-scale also proportional to this distance
in the equilibrium (or inertial) layer, such that the motion of
“the main eddies of the flow... is directly influenced by its
presence” (Townsend, 1976), resulting with distance from
the wall scaling for the eddy structure in all spatial direc-
tions.

These ideas have been elaborated effectively over sev-
eral years into the attached eddy model (AEM), most re-
cently reviewed in Marusic & Monty (2019), which deploys
a (static, linear) superposition of hierarchies of self-similar
eddies. In a discrete representation, the wall-normal eddy
lengthscales (heights), δE,m, are related by a geometric pro-
gression and the structures are randomly distributed over
wall-parallel planes with the number of structures belong-
ing to hierarchy m described by Nm ∼ y−2

m . Knowledge of
the precise self-similar eddy form is not required to recover
logarithmic scaling for the mean velocity profile and wall-
parallel fluctuation variances and a constant v-variance, but
is important for precise matching of higher order statistics.
Recent work de Silva et al. (2016) has shown that includ-
ing a spatial exclusion condition to prevent eddies of the
same hierarchy overlapping each other leads to improved
capture of higher-order statistics. Perry & Marusic (1995)
noted that a wall-normal extent which scales with distance
from the wall can be obtained by two types of eddies: those

which reach down to the wall, i.e. δE,m = ym, as well as
those which do not, δE,mm < yi, which they denoted as
Type-A and Type-B eddies, respectively. The inclusion of
Type-B eddies improved the accuracy of the AEM in the
wake region of the flow. Information on the eddy dynam-
ics is not immediately available (but could be determined
using the Biot-Savart calculations). The predictive capabil-
ities of the attached eddy model are rightly celebrated, and
the subject of significant current study.

Flores & Jiménez (2010) and Hwang & Bengana
(2016) have identified self-sustaining turbulent solutions to
the Navier-Stokes equations in channel flow simulations
with domains restricted to be proportional to distance from
the wall, while recent work by Yang et al. (2019) identifies
families of attached exact coherent structures. The statistics
of these flows are consistent with the properties of attached
eddies, and thus appear to provide evidence that the latter
are multi-scale and self-sustaining within the minimal unit
construction introduced by Jiménez & Moin (1991). Fur-
ther, these studies give information on the dynamics of such
flows, which strongly resemble those of the near-wall cycle
identified in the original study. The mean momentum bal-
ance analysis (MMB) of Klewicki et al. , e.g. Klewicki et al.
(2014), identifies self-similar scaling layers contributing to
the mean Reynolds stress and therefore the mean velocity
profile.

Here we explore the signature of self-similar and self-
sustaining dynamics derived from the Navier-Stokes equa-
tions.

APPROACH
The resolvent formulation for wall turbulence has been

described in detail in previous publications, e.g. McKeon
and Sharma (2010) and McKeon (2017). The essential out-
line of the closed-loop resolvent analysis is shown in Fig-
ure 1, and the development here is for turbulent channel
(plane Poiseuille) flow in a domain which is periodic in the
streamwise and spanwise directions, x and z, respectively,
with no-slip and no-penetration wall boundary conditions.
Fourier transforming the Navier-Stokes equations in (x,z, t)
and defining fluctuations relative to the spatio-temporal tur-
bulent mean (which is assumed to be known from, e.g., ex-
perimental data, simulations or an eddy viscosity model),
U(x,y,z, t) =U(y)+u(x,y,z, t), rearranging, and formulat-
ing in velocity-vorticity form, (v,η), we arrive at
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Figure 1. Cartoon of the closed loop resolvent analysis in velocity-vorticity formulation.
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ĝη

)
(1)

where

Hvv = (−iω + k2 = D2)−1LOS)
−1 (2)

Hηη = (−iω +LSQ)
−1 (3)

Hηv = −ikzHηηU ′Hvv (4)

and LOS is the Orr-Sommerfeld operator. Here ĝv and
ĝη represent the nonlinear forcing of the linear veloc-
ity/vorticity terms at k = (kx,kz,ω) arising from the lin-
ear interactions between other scales, and the H constitut-
ing the resolvent (transfer function) are related to the well-
known Orr-Sommerfield and Squire operators.
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Input-output analysis of this form was described by Jo-
vanovic and Bamieh (2005) for laminar flow, and several
other studies have considered the characteristics of the lin-
ear resolvent operator using an eddy viscosity rather than
the explicit nonlinear term to provide a closure, e.g. Hwang
and Cossu (2010). A singular value decomposition (SVD)
of the resolvent transfer function can be used to obtain a ba-
sis set of forcing and associated response modes ranked by
gain (singular value).

Further decomposition into Orr-Sommerfield and
Squire modes (Rosenberg & McKeon (2019)), forced by gv
and gη (only), respectively, leads to an efficient basis by
which to represent the full turbulent field with high fidelity;
for simplicity here we consider only the singular response
modes associated with the full resolvent operator, H , from
Equation 1. The appropriate weights, χ j(kx,kz,ω), for each
basis function can be determined either by consideration of
the nonlinear interaction of response modes at other k com-
binations or from data, as summarized in McKeon (2017).

The resolvent operator has been found to be surprisingly
low-rank in the wavenumber-frequency range where turbu-
lence is energetic (Moarref et al., 2013), such that only a low
number of resolvent response modes are required to capture
key physical features. This low-rank behavior is exploited
here, where we employ only the first singular (forcing and
response) modes to examine structure in the inertial region.
Further details pertaining to the results presented here may
be found in McKeon (2019).

The question to be addressed here, with reference to
Figure 1 is: in what regions of the flow and under what
conditions (if any) will the full, nonlinear loop exhibit self-
similar behavior, and how does the associated structure
compare with existing, known scalings?

SELF-SIMILARITY OF THE RESOLVENT AND
NONLINEAR FORCING IN THE INERTIAL RE-
GION

Considering first the linear part of Figure 1, the general
conditions for self-similarity of the resolvent operator have
been outlined by Hwang & Cossu (2010) and Moarref et al.
(2013). Geometric self-similarity of the response modes is
possible in the inertial region, provided the following three
conditions are met: the mean velocity profile is logarith-
mic, the support of the modes is within the log region, and
the modes have an aspect ratio such that kx � kz. Under
these constraints, hierarchies can be defined on which the
response modes are self-similar under the scalings

k̂x = kxycy+c = α; k̂z = kzyc = β ; ŷ = y/yc (7)

where α and β are constants and yc denotes the mode crit-
ical layer, where U(yc) = ω/kx = c. A sketch of such hi-
erarchies and the collapse of streamwise mode shapes on
a sample hierarchy are shown in Figure 2. These scalings
are consistent with the AEM in y and z, both of which scale
with distance from the wall, but notably different from the
AEM with regards to streamwise wavenumber.

Concerning the nonlinear forcing, Moarref et al.
(2014a) and Sharma et al. (2016) showed that the nonlin-
ear interaction of modes on self-similar hierarchies also ex-
hibits self-similar behavior in the inertial region. If modes
on three hierarchies at one distance from the wall are triad-
ically consistent (resonant), then they will be so at larger y
values. The mode weights are governed by

χm1 = ∑
m2,m3

Nm,123χm2χm3 (8)

where the interaction coefficient, N , is self-similar, such
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Figure 2. Left: schematic showing three self-similar hierarchies (vertical lines) and the location of kx = 3kz, shown as the red
inclined plane. Below this plane the approximate streamwise-spanwise mode aspect ratio for self-similarity is not achieved.
After Moarref et al. (2013). Right: collapse of scaled u modes on a sample hierarchy.

that at ym and yn:

Nm,123 =
∫

φ
∗
m1.(ψm2.∇ψm3)dy (9)

Nn,123 = e−2.5κ(cn−cm)Nm,123 (10)

Thus for yn = Aym, χ1n = f (A)χ1m.
Both the linear and nonlinear components of the resol-

vent framework exhibit self-similarity, and thus there ex-
ists the possible of self-sustaining assemblies of hierarchies
which lead to self-similar behavior with y.

SELF-SIMILAR STRUCTURE AND SIGNA-
TURES

While the resolvent scaling in the streamwise compo-
nent deviates in a spectral sense from the AEM distance-
from-the-wall scaling, the physical structure associated
with members of a hierarchy represents a more faithful
comparison to attached eddies as proposed by Townsend.
Thus we consider the streamwise velocity signature asso-
ciated with one self-similar hierarchy. The flow studied is
channel flow at Reτ = 15,000 and the hierarchy has ref-
erence parameters (λr,cr) = (29,123,U(yc5)). Discrete
members of the hierarchy are obtained in the inertial region,
y+ > 3/

√
Reτ , via a geometric progression with A = 2,

i.e. yc,m+1 = yc,m/2. The (five) locations of the yc val-
ues are marked with black dashed lines in the subsequent
figures. The magnitudes of the modes are chosen to give
the same peak amplitude, 10% of the channel centerline ve-
locity (note that the surfaces of zero velocity will be only
weakly dependent on the magnitudes), and the phases re-
flect either symmetry (Figures 3-5) or antisymmetry (Fig-
ures 6-8) around z = 0, for ease of visualization. Modes
on a single hierarchy are not triadically consistent. Because
the members of a hierarchy convect with different veloci-
ties, modes experience all phases relative to each other over
time.

Figure 3 shows the variation of the composite u signal
from the members of the hierarchy in a streamwise/wall-
normal plane, i.e. for a fixed spanwise location, z0 = 0. The
chosen value of A ensures overlap of each mode with imme-
diate neighbors in y (independent of the mode amplitude).

Tracking the negative (blue) isocontours reveals the pres-
ence of extended structures which have a footprint down to
the wall from each yc. For example, the negative isocon-
tours observed at yc ≈ 0.4 reach down to the wall. Negative
isocontours observed at yc ≈ 0.2 but not at 0.4 also reach to
the wall. These structures are self-similar according to the
scaling of Equation 7, as shown in the zoomed-in regions
from Figure 3 in Figure 4. In a field of view spanning two
periods of the largest wavelength mode, one observes two
structures of the tallest kind, four of the next smallest, with
the smaller structures interspersed between the larger ones,
etc. Thus, while self-similarity of the equations of motion
(through the resolvent) requires a streamwise wavelength of
λx ∼ y2

c on the hierarchy, the effective spacing of structures
at a given yc is given by λ̃x = y2

c/2∼ yc, which is consistent
with AEH scaling.

Figure 5 shows the sum of the same fluctuation field
and the mean velocity profile (the inferences from this anal-
ysis are robust to the exact ratio of centerline velocity to
mode magnitude here). Saxton-Fox & McKeon (2016)
demonstrated that the summing of a response mode and the
mean profile leads to an asymmetric (in y, about yc) instan-
taneous velocity field because of the monotonic decay of the
mean shear with distance from the wall, with “bulge” and
“ramp” structures reminiscent of the coherence observed in
real flows. Because the mean profile as well as the fluc-
tuations are self-similar in the overlap region, Figure 5 re-
veals self-similar bulges of low momentum fluid associated
with different positions on the hierarchy. These have the
same space-filling distribution as described for the fluctu-
ations of Figure 3, but these are the likely equation-driven
analogs of Townsend’s attached eddies, since they pertain to
the instantaneous velocity rather than just the velocity fluc-
tuation. Further, this accounting for structure rather than
spectral scaling identifies the self-similarity of coherent re-
gions and a possible explanation for hints of fractal behavior
in earlier studies.

Three-dimensional isosurfaces of fluctuation are
shown in Figure 6 for modes with the same yc values as
the preceding figures, but antisymmetry about z = 0. The
sub-unit of two streamwise wavelengths and half a span-
wise wavelength of the uppermost member of the hierar-
chy of Figure 7(a) is color-coded by the appropriate scaling
height, i.e. the height of the aggregated structure, in 7(b).
Associated with a single unit of the tallest structure (shown
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Figure 3. Snapshot of the streamwise velocity fluctuation, u+(x,y,z0, t0), in a streamwise/wall-normal plane obtained from a
self-similar family of resolvent modes with (λr,cr) = (29,123,U(yc5)) and ym+1 = 2ym at Reτ = 15,000. Lowest member of
the hierarchy occurs at the start of the inertial region, y5 ≈ 3/

√
Reτ . Red and blue colors denote positive and negative values of

u+, respectively, and the x-direction is normalized with respect to the longest mode in the hierarchy which is plotted.

Figure 4. Snapshot of the streamwise velocity fluctuation, u+(x,y,z0, t0), in a streamwise/wall-normal plane obtained from
the same self-similar family of resolvent modes as in Figure 3.

in green) are four structures of the next smallest scale (in
blue), sixteen of the next smallest (in yellow), etc., such that
the number of structures of any scale relative to the number
of the largest one, N1, is given by

Nm =

(
yc,m

yc,1

)2
N1. (11)

The appropriate ensuing accounting of structures at a
given wall-parallel plane is shown in schematic in Figure 8.

SUMMARY
The implications of self-similarity on coherent struc-

ture in the logarithmic region and the connections between
the spectral picture afforded by the resolvent analysis and
the attached eddy hypothesis have been discussed. The re-
solvent mode representation permits investigation of the dy-
namics of the self-similar hierarchies, as well as the po-
tential for self-sustenance of an assembly of such hierar-
chies, both of which are absent from the classical AEM.
The apparent conflict between geometric self-similarity of
the linear Navier-Stokes operator for turbulent flow and the
full distance-from-the-wall scaling of Townsend and the
AEM can be conceptually resolved by making an “apples-
to-apples” structural comparison, following the common
AEM representation of a geometric progression (rather than

a continuous distribution) of eddy sizes. The aggregated
structures associated with a geometrically self-similar resol-
vent hierarchy obey the attached eddy scaling; however the
analogy is not complete: these aggregations exist relative to
the turbulent mean profile, which is assumed (equally, acts
as a constraint) in the resolvent framework.

The results of Moarref et al. (2014b) and Sharma et al.
(2016) concerning self-similarity of the nonlinear inter-
actions between resolvent hierarchies reveal the possibil-
ity of self-sustaining assemblies of hierarchies, with likely
connection to the self-similar, self-sustaining solutions ob-
tained in minimal unit simulations in the logarithmic layer.

The connection between the velocity response modes
which are naturally most amplified in the equations of mo-
tion, parameterized in spectral space, and empirical physi-
cal space reasonings going back to Townsend seems to hold
promise both for improved modeling in both domains. We
have focused on the first resolvent modes herein, but the
approach can be extended to consider higher rank resol-
vent approximations and to include the separate consider-
ation of Orr-Sommerfield and Squire contributions to the
wall-normal vorticity, which was identified by Rosenberg
& McKeon (2019) as an important step in obtaining an ef-
ficient basis to represent real flows. The weights, χ j(λ ,c),
hold the key to nonlinear closure of the resolvent frame-
work; the work herein suggests that analytical progress
to complement data-driven resolvent approaches may be
made.
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Figure 5. Snapshots of the instantaneous streamwise velocity, U(x,y,z0, t) =U(y)+u(x,y,z0, t0), in a streamwise/wall-normal
plane obtained from the same self-similar family of resolvent modes as in Figure 3.

Figure 6. Three-dimensional isosurfaces of negative U(x,y,z, t0) for z = 0 antisymmetric modes.

Further connections with the mean momentum balance
analysis, which pertains to self-similarity of a hierarchical
distribution of contributions to the Reynolds stress, −uv,
determined from the mean momentum equation in the iner-
tial range, and exact coherent structures in the logarithmic
region, which have connections with self-similar nonlinear
interactions of resolvent modes, are the subject of ongoing
work.
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