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Laboratoire de Mécanique des Fluides de Lille–Kampé de Fériet (LMFL)
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ABSTRACT

On the basis of (i) Particle Image Velocimetry (PIV)
data of a Turbulent Boundary Layer with large field of view
and good spatial resolution and (ii) a mathematical rela-
tion between the energy spectrum and minimally modeled
flow structures, we show that the scalings of the stream-
wise energy spectrum E11(kx) in a wavenumber range di-
rectly affected by the wall are determined by wall-attached

eddies but are not given by the Townsend-Perry attached
eddy model’s prediction of these spectra, at least at the
Reynolds numbers Reτ considered here which are between
103 and 104. Instead, we find E11(kx) ∼ k−1−p

x where p
varies smoothly with distance to the wall from negative val-
ues in the buffer layer to positive values in the inertial layer.
The exponent p characterises the turbulence levels inside
wall-attached streaky structures conditional on the length
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of these structures. A particular consequence is that the
skin friction velocity Uτ is not sufficient to scale E11(kx)
for wavenumbers directly affected by the wall.

INTRODUCTION
The present work looks at the basis for the Townsend-

Perry k−1
x range in the streamwise energy spectrum from a

new perspective. Using Particle Image Velocimetry (PIV)
of flat plate turbulent boundary layer and a simple model
which can in principle be applied to various wall-bounded
turbulent flows, we show how, in the turbulent bound-
ary layer, a power-law spectral range exists but is not a
Townsend-Perry k−1

x range and how it can be accounted for
by taking only streamwise lengths and intensities of wall-
attached structures into account.

A SIMPLE MODEL
Perry & Abell (1977), Perry & Chong (1982) and Perry

et al (1986) showed how Townsend’s attached eddy hypoth-
esis implies E11(kx)∼U2

τ k−1
x in the range 1/δ � kx� 1/y

(δ is the boundary layer thickness and y is the distance from
the wall). Perry et al (1986) also developed a flow structure
model for this spectral range in terms of specific attached
eddies of varying sizes randomly distributed in space and
with a number density that is inversely proportional to size.
In this paper we attempt to distill such a type of model to its
bare essentials. These bare essentials are that flow struc-
tures are primarily objects with clear spatial boundaries.
We model these boundaries with on-off functions in the ex-
pectation that the spectral signature in the attached eddy
wavenumber range is dominated by these sharp gradient, ef-
fectively on-off, behaviours. The concomitant expectation
is that the additional superimposed velocity fluctuations fill
the content of a predominantly higher frequency spectral
range. In this section we show that the streamwise energy
spectrum’s k−1

x spectral range can be captured by simple on-
off representations of elongated streaky structures of vary-
ing sizes as long as their number density has a space-filling
power law dependence on size.

We therefore assume that the attached eddies responsi-
ble for the k−1

x spectral range have a long streaky structure
footprint on the 1D streamwise fluctuating velocity signals
at a distance y from the wall. We also assume that these
streaky structures can be modeled as simple on-off func-
tions and that it is sufficient to represent the streamwise ve-
locity fluctuations u(x) at a given height y from the wall as
follows

u(x) = ∑
n,m

anmΠ(ξ ) (1)

where Π(ξ ) = 1 if−1 < ξ < 1 with ξ = x−xnm
λn

and Π(ξ ) =

0 otherwise. The on-off function Π(ξ ) is our cartoon model
of a streaky structure. Streaky structures of length λn are
centred at random positions xnm and their intensity is given
by the coefficients anm. For each subscript n, the subscript
m counts the spatial positions where cartoon structures of
size λn can be centred in a given realisation. The sum in (1)
is over all structures lengths λn and all their positions xnm.

The energy spectrum of u(x) is E11(kx) =
(2π)2

Lx
|û(kx)|2

where Lx is the length of the record, û(kx) is the Fourier
transform of u(x), and the overbar signifies an average

over realisations. The Fourier transform of Π( x−xnm
λn

) being

Π̂(kx,λn,xnm) = 2ik−1
x eikxxnm sin(kxλn), it follows that

û(kx) = 2ik−1
x ∑

nm
anmeikxxnm sin(kxλn) (2)

which implies that the energy spectrum is given by

E11(kx) =

4
(2π)2

Lx
k−2

x ∑
nm

anmeikxxnm sin(kxλn)∑
pq

apqe−ikxxpq sin(kxλp).

(3)
We introduce two assumptions which were also used

by Perry et al (1986) in their more intricate model. The first
assumption is that the positions and amplitudes of our car-
toon stuctures are uncorrelated and that different positions
are not correlated to each other either, i.e. eikxxnm eikxxpq =
δpnδqm. As a result, the expression for the energy spectrum
simplifies as follows:

E11(kx) = 4
(2π)2

Lx
k−2

x ∑
nm

(anm)2 sin2(kxλn). (4)

Let us say that there is an average number Nn of car-
toon stuctures of size λn centred within an integral scale
along the x-axis. The expression for E11(kx) simplifies even
further:

E11(kx) = 4
(2π)2

Lx
k−2

x ∑
n

a2
nNn sin2(kxλn) (5)

where a2
n ≡ (anm)2 is the same irrespective of position xnm.

We now consider a continuum of different structure
sizes λ rather than discrete length-scales λn and the pre-
vious expression for E11(kx) must therefore be replaced by

E11(kx) = 4
(2π)2

Lx
k−2

x

∫
dλa2(λ )N(λ )sin2(kxλ ) (6)

in terms of easily understandable notation. At this point
we introduce a generalised form of the second assump-
tion which was also used by Perry et al (1986): we as-
sume a power-law form for N(λ ) in the range λi < λ < λo
where λi ∼ y and λo ∼ δ , and N(λ ) = 0 outside this range
for simplicity. This power law form is N(λ ) = (−NM +
No(λ/δ )−1−D) where NM and No are positive dimension-
less numbers which increase propotionally to Lx so as to
keep number densities constant. The number NM is in-
troduced to allow for the possibility of an upper bound
on streaky structure size given by N(λo) = 0, i.e. NM =
No(λo/δ )−1−D which should be small given that LSM and
VLSM streaky structures have been observed with lengths
greater than δ .

Vassilicos & Hunt (1991) proved that, if 0 ≤ D ≤ 1,
then the set of points defining the edges of the on-off func-
tions Π(ξ ) is fractal and D is effectively the fractal dimen-
sion of this set of points. The case where this fractal di-
mension is D = 1 is the case where these points are space-
filling. The population density assumption of Perry et al
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(1986) corresponds to D = 1 which is also the choice we
make in this work. We now show that this choice can lead
to E11(kx)∼ k−1

x in the range 1/λo� kx� 1/λi.
We calculate the energy spectrum by carrying out the

integral in (6). This requires a model for a2(λ ) which, in
this section, we chose to be as simple as possible and there-
fore independent of λ in the relevant range, i.e. a2(λ ) =
A2/δ for λi < λ < λo where A2 is a constant. Using our
models for N(λ ) and a2(λ ) and the change of variables
λkx = l, (6) becomes

E11(kx) = A2
δ (Co(kxδ )−2+D−CM(kxδ )−2) (7)

where

Co = 4(2π)2No
δ

Lx

∫
λokx

λikx

dl sin2(l)l−1−D

and

CM = 4(2π)2NM
δ

Lx
(kxδ )−1

∫
λokx

λikx

dl sin2(l)

which is bounded from above by NM
Lx

λo−λi
δ

. In
the attached eddy range 1/λo � kx � 1/λi, Co ≈
4(2π)2 No

Lx

∫
∞

0 dl sin2(l)l−1−D which means that Co is ap-
proximately independent of kx in this range.

Substituting the value D = 1 in equation (7), we get
E11(kx) = A2(Cok−1

x −CMδ−1k−2
x ) which is well approxi-

mated by

E11(kx)≈CoA2k−1
x (8)

for wavenumbers kxδ �CM/Co (i.e. Cok−1
x �Cmδ−1k−2

x ).
Note that CM/Co is much smaller than 1 because NM is
much smaller than No and that (8) is valid in the range
1/λo� kx� 1/λi where λo scales with but is much larger
than δ . For a good correspondence with the scalings of
the Townsend-Perry attached eddy model one needs to take
λi ∼ y and A2 ∼U2

τ .
We now generalise this model by assuming that a2(λ )

is not constant but varies with λ in the range λi < λ < λo,
for example as a2(λ ) = (A2/δ )(λ/δ )p where p is a real
number with bounds which we determine below. The per-
vious arguments can be reproduced till equation (6) which
now becomes

E11(kx) = A2
δ [co(kxδ )−2+D−p− cM(kxδ )−2] (9)

where

co = 4(2π)2No
δ

Lx

∫
λokx

λikx

dl sin2(l)l−1−D+p

and

cM = 4(2π)2NM
δ

Lx
(kxδ )−1−p

∫
λokx

λikx

dl l+p sin2(l)

which is bounded from above by Nm
(1+p)Lx

[( λo
δ
)1+p −

( λi
δ
)1+p]. In the attached eddy range 1/λo � kx � 1/λi,

co ≈ 4(2π)2 No
Lx

∫
∞

0 dl sin2(l)l−1−D+p which means that co
is approximately independent of kx in this range if 0 <
D− p < 2.

Substituting the value D = 1 in (9), we obtain the fol-
lowing leading order approximation in the parameter range
−1 < p < 1:

E11(kx)≈ c0A2
δ (kxδ )q (10)

where

p+q =−1 (11)

for wavenumbers kxδ � (cM/co)
1

1−p . Note that cM/co is
much smaller than 1 if p is not too close to 1 because NM is
much smaller than No.

The spectral shape (10) is potentially significantly dif-
ferent from what the classical Townsend-Perry attached
eddy model predicts. We emphasize that in this and the pre-
vious sections we have developed a simple model based on
on-off functions representing long streaky structures which
returns a wavenumber dependency of E11(kx) which is ei-
ther identical to the Townsend-Perry spectral shape if p= 0,
or different but in some ways comparable if p 6= 0. In the
remainder of this paper we present experimental evidence
in support of D = 1 and (10)-(11) rather than (8), with p as
function of y+.

Note that a2(λ ) = (A2/δ )(λ/δ )p is the mean square
fluctuating velocity obtained by averaging over wall-
attached flow structures of size λ at a certain distance y
from the wall. The definition of these wall-attached flow
structures is straightforward and minimal, as it is based on
identifying their boundaries. This definition was applied to
our PIV data to extract wall-attached structures.

EXPERIMENTAL SET-UP
An experiment was performed in the boundary layer

wind tunnel at the Lille Fluid Mechanics Laboratory
(LMFL) having a test section 2m wide, 1m high and 20.6m
long. The tests were conducted at two free stream veloci-
ties of 3m/s and 10m/s corresponding to Reynolds numbers
Reθ = 8100 (Reτ = 2700) and Reθ = 20600 (Reτ = 7200)
respectively. To capture the large streamwise wall-normal
field, four 12 bits Hamamatsu cameras having a resolution
of 2048x2048 pixels were installed in series to observe a
region between 19.26m and 20.42m from inlet which is
1.16m long (≈ 3.36δ and 3.85δ , for Reθ = 8100 and 20600
respectively) and 0.3m high (≈ 0.86δ and 1δ ) for Reθ =
8100 and 20600 respectively). Nikon lenses of 50mm fo-
cal length were set on the cameras and the magnification
obtained was 0.05. The Software HIRIS was used to ac-
quire the images of the four cameras simultaneously. A total
of 22500 and 29500 samples were recorded at the highest
and lowest Reynolds numbers respectively. The flow was
seeded with 1µm Poly-Ethylene glycol and illuminated by
a double pulsed NdYAG laser at 400mJ/pulse. The modi-
fied version by LMFL of MatPIV toolbox, was used under
Matlab to process the acquired images from the 2D2C PIV.
A multipass software was used with a final pass of 28x28
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pixels (with a mean overlap of 65%) corresponding to 4mm
x 4mm i.e. 33x33 wall units for Reθ = 8100 and 100x100
wall units for Reθ = 20600. Image deformation was applied
at the final pass. The final grid had 766 points along the
wall and 199 points in the wall-normal direction with a grid
spacing of 1.5mm corresponding to 11 wall units and 35
wall units for the test cases at Reθ = 8100 and Reθ = 20600
respectively.

RESULTS
We obtained well-resolved PIV data of a flat plate

turbulent boundary layer in a large field of view at two
Reynolds numbers, Reθ = 8100 and Reθ = 20600. As
shown by Srinath et al (2018), these data support the con-
cept of elongated streaky structures which are part of at-
tached eddies and can be modeled as simple on-off func-
tions. Srinath et al (2018) also explain how the raw fluc-
tuating streamwise velocity fields to lead to binary fields
which we use in our statistical analysis.

To obtain statistics of wall-attached elongated streaky
structures represented as on-off functions in our model and
as binary structures in the final stages of our structure educ-
tion method, we first label the connected components of the
binary images using image processing tools. Then we com-
pute the streamwise length λ of each labelled structure at
a distance y from the wall, i.e. the difference between the
smallest and the largest values of streamwise coordinate x
in this labelled structure at height y. Finally we compute
the average value α of the streamwise fluctuating velocity
component u inside this labelled structure at height y. Thus
we obtain a pair (λ ,α) for each labelled structure at each
height y considered. See Srinath et al (2018) for more de-
tails.

The model in the previous sections assumes that the
number of wall-attached elongated streaky structures of size
λ has a decreasing power-law dependence on λ in a certain
range of λ values. Following Perry et al (1986), we expect
the spatial distribution of such structures to be space-filling,
which implies that the exponent of this power law should be
-2. We evaluate the probability distribution function (PDF)
of lengths λ at various wall distances and find that the most
probable length λ lies between 0.3δ and 0.5δ and lengths
λ longer than 3.5δ occur very rarely.

We also find a power law dependence on λ between
about 0.5δ and 2δ with power law exponent -2, i.e. D = 1,
in all cases. Given the form of N(λ ) hypothesised in
the previous section’s model (see Srinath et al 2018 for
details), we fit the PDF of λ/δ with a functional form
−C1 +C2(λ/δ )−2. This fit is effectively the same for both
Reynolds numbers and all values of y+ in the mean flow’s
approximate inertial region, and it is in very good agree-
ment with the hypothesis made in the on-off model briefly
sketched in the previous section. It is worth noting that the
lower bound of the range where the PDF of λ/δ is well ap-
proximated by−C1+C2(λ/δ )−2 seems to increase slightly
with increasing y+. These results are obtained for wall-
attached structures with negative streamwise fluctuating ve-
locities but identical results can also br obtained for positive
such velocitis except that C1 and C2 are slightly different. A
more detailed account can be found in Srinath et al (2018).

A direct inspection of log-log plots of the streamwise
energy spectrum would suggest E11(kx) ∼ U2

τ k−1
x in the

range 2π/(4δ ) < kx < 0.63/y. However, a closer look as-
sisted by relation (10)-(11) reveals a significantly different

behaviour. This relation introduces a specific data analy-
sis which involves the extraction of wall-attached elongated
streaky structures from PIV data. The concurrent analy-
sis of streamwise energy spectra and of the relation be-
tween the turbulence levels inside streaky structures and the
length of these structures offers strong support for (10)-(11)
over a significant range of wavenumbers and length-scales
(see figures 1, 2 and 3 where all the exponents are plot-
ted with the 95% confidence intervals for these fits). This
range covers LSMs and is comparable to the range where
one might have expected the Townsend-Perry attached eddy
model spectra to be present. Even though k−1

x spectra are
not validated by our data, the streaky structures which ac-
count for the scalings of E11(kx) do need to be wall-attached
for relation (10)-(11) to hold. Our conclusions agree with
the experiments of Vallikivi et al (2015) which actually sug-
gest that the Townsend-Perry k−1

x spectrum cannot be ex-
pected even at very high Reynolds numbers. The revised
streamwise energy spectral form (10)-(11) with p = p(y+)
given by figure 1 has a range of validity over an extended
range of wall distances and returns spectral exponents q(y+)
which agree with the Hot Wire Anemometry (HWA) data
of Tutkun et al (2009) and the Direct Numerical Simulation
(DNS) data of Lee & Moser (2015) (see figure 2).

CONCLUSIONS
We obtained well-resolved PIV data of a flat plate

turbulent boundary layer in a large field of view at two
Reynolds numbers, Reθ = 8100 and Reθ = 20600. A di-
rect inspection of log-log plots of the streamwise energy
spectrum would suggest E11(kx) ∼ U2

τ k−1
x in the range

2π/(4δ ) < kx < 0.63/y. However, a closer look assisted
by relation (10)-(11) reveals a significantly subtler be-
haviour. This relation introduces a specific data analysis
which involves the extraction of wall-attached elongated
streaky structures from PIV data. The concurrent analysis
of streamwise energy spectra and of the relation between the
turbulence levels inside streaky structures and the length of
these structures offers strong support for (10)-(11) over a
significant range of wavenumbers and length-scales. This
range covers LSMs and is comparable to the range where
one might have expected the Townsend-Perry attached eddy
model spectra to be present. Even though k−1

x spectra are
not validated by our data, the streaky structures which ac-
count for the scalings of E11(kx) do need to be wall-attached
for relation (10)-(11) to hold. Our conclusions agree with
the experiments of Vallikivi et al (2015) which actually sug-
gest that the Townsend-Perry k−1

x spectrum cannot be ex-
pected even at very high Reynolds numbers. The revised
Townsend-Perry streamwise energy spectral form (10)-(11)
with p = p(y+) given by figure 1 appears to extend the va-
lidity of the attached eddy concept and its revised conse-
quences to a wider range of Reynolds numbers and a wider
range of wall distances.

Finally, we stress that relation (10)-(11) is predi-
cated on these wall-attached streaky structures being space-
filling, i.e. D = 1 in the notation of Srinath et al (2018).
The pdf of the streamwise length of the educed streaky
structures does indeed follow a power law with exponent
−1−D =−2 over the range of scales which corresponds to
the one where (10)-(11) holds.

Our work sheds some new light on the streamwise tur-
bulence spectra of wall turbulence by revealing that some
of the inner structure of wall-attached eddies is reflected in
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the scalings of these spectra via p(y+). An important im-
plication of this structure is that the friction velocity is not
sufficient to scale the spectra. Future work must now further
probe the inner structure of wall-attached eddies, attempt to
explain it and extend our analysis to higher Reynolds num-
bers so as to establish with certainty the ranges of the power
laws (exponents p and q in (10)-(11)) discussed in this pa-
per. When this will be done, a complete picture of stream-
wise energy spectra will also need to integrate the spectral
model of Vassilicos et al (2015).
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Figure 1. Exponents p obtained from the best power-law fit of a2 ∼ (λ/δ )p.
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Figure 2. Exponents q obtained from the best power-law fit of E11 ∼ kq
x for the present PIV data, the HWA turbulent boundary

layer data of Tutkun et al (2009) and the DNS of turbulent channel flow data of Lee & Moser (2015).
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Figure 3. p+q versus y+.
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